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ABSTRACT: α,β-Unsaturated carbonyl compounds are
versatile intermediates in the synthesis of pharmaceuticals
and biologically active compounds. Here, we report the
discovery and application of Pd(DMSO)2(TFA)2 as a
catalyst for direct dehydrogenation of cyclohexanones and
other cyclic ketones to the corresponding enones, using O2

as the oxidant. The substrate scope includes heterocyclic
ketones and several natural-product precursors.

Molecular hydrogen and oxygen are the quintessential redu-
cing and oxidizing agents, respectively. Whereas hydro-

genation reactions are commonplace in multistep organic
synthesis, aerobic oxidation reactions are seldom used. For
example, numerous highly selective methods and sophisticated
catalysts exist for the hydrogenation of alkenes;1 however, com-
plementary aerobic dehydrogenationmethods for alkene synthesis
are unavailable2 (Scheme 1A). We recently reported a method for
PdII-catalyzed aerobic dehydrogenation of cyclohexanones to
phenols.3 These reactions proceed via a cyclohexenone intermedi-
ate that undergoes further dehydrogenation to the phenol under
the reaction conditions (Scheme 1B). Here, we report the
identification of a different Pd catalyst system that enables selective
dehydrogenation of cycloketones to afford enones rather than
phenols. Cyclohexenones and related α,β-unsaturated carbonyl
compounds are key intermediates in the synthesis of pharmaceu-
ticals and other biologically active compounds.4 Their preparation
typically requires two or more steps5�7 and/or the use of
stoichiometric reagents, such as 2-iodoxybenzoic acid (IBX)8,9 or
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).10 Catalytic
methods for aerobic dehydrogenation of ketones to enones would
provide appealing, atom-economical alternatives to these stoichio-
metric methods.

The synthesis of enones via PdII-mediated dehydrosilylation of
silyl enol ethers was reported by Ito and Saegusa in 1978.6a In some
cases, these reactions have been achieved with catalytic PdII,6b,c but
the use ofg0.5 equiv of PdII is commonly required to obtain good
yields of products.4b,c,11 Methods for direct PdII-catalyzed dehy-
drogenation of ketones have been pursued as an alternative to
Saegusa reactions; however, previous examples exhibit quite
limited substrate scope.12�15 Both Saegusa-type dehydrosilylation
and direct dehydrogenation reactions are expected to be initiated
by formation of a PdII-enolate, followed by β-hydride elimination
to afford the enone product (Scheme 2).16 The resulting
PdII�hydride intermediate can be oxidized by O2 to regenerate
the PdII catalyst.17,18 Recent advances in PdII-catalyzed aerobic

oxidation and C�H functionalization reactions19 provided useful
starting points for our investigation of dehydrogenation catalysts.

Our initial catalyst screening efforts focused on the dehydro-
genation of 4-tert-butylcyclohexanone 1 under relatively mild
conditions: 1 atmO2, 80 �C, 12 h (Table 1).20 Use of the recently
reported PdII catalyst, Pd(TFA)2/2-N,N-dimethylaminopyri-
dine (2-Me2Npy), for conversion of cyclohexanones to phenols

3

resulted in incomplete conversion and, as expected, favored
formation of phenol 3 over the enone 2 (entry 1). The best
previous catalyst for the conversion of cyclohexanone to cyclo-
hexenone, reported by Tsuji and co-workers,12e forms enone 2
selectively, but only in 19% yield under these conditions (entry 2).
Improved results were obtained by using catalytic Pd(OAc)2 in
DMSO,21,22 affording a mixture of enone and phenol products in
63% and 14% yield, respectively (entry 3). The best results were
obtained by using DMSO as a ligand (10 mol %) with Pd(TFA)2
(5 mol %; TFA = trifluoroacetate) in acetic acid (entry 7). This
catalyst system led to a 91% yield of the desired enone 2.
Replacing DMSO with other monodentate and bidentate

Scheme 1. Hydrogenation/Dehydrogenation of C�C
Bonds (A) and Pd-Catalyzed Dehydrogenation of
Cyclohexanones (B)

Scheme 2. Proposed Mechanism for PdII-Catalyzed
Dehydrogenation of Cyclic Ketones
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ligands led to inferior results (entries 13�19; see also Table
S1).23 The benefit of using DMSO as a catalytic ligand, rather
than a solvent, has been observed recently in two other Pd-
catalyzed aerobic oxidation reactions, including chelate-directed
C�Harylation of anilides24 and oxidative amination of alkenes.25

The high selectivity for formation of the enone with the
Pd(DMSO)2(TFA)2 catalyst system is noteworthy in light of
the preferential formation of phenols with a Pd(TFA)2/2-
Me2Npy catalyst system.3 A comparison of time courses for

reactions with the two catalyst systems (Figure 1) highlights the
significant differences between the relative rates of the corre-
sponding dehydrogenation steps (cf. Scheme 1B). Fitting of
the time-course data to a simple sequential kinetic model,
A f B f C,26 reveals that the first dehydrogenation step is 33-
fold faster than the second step when Pd(DMSO)2(TFA)2 is
used as the catalyst. In contrast, the first step is nearly 2-fold
slower than the second step with the Pd(TFA)2/2-Me2Npy
catalyst system.27 Further mechanistic studies are ongoing,
but these observations have important implications for use
of the present catalyst system in the synthesis of enones
(Table 2).

A number of 4-substituted cyclohexanone derivatives under-
went dehydrogenation in good yields with the Pd(DMSO)2-
(TFA)2 catalyst (Table 2, entries 1�5). Substrates with electron-
deficient substituents (entries 2 and 3) exhibited somewhat faster
rates, and the conditions tolerated various functional groups,
including trifluoromethyl and siloxy groups (entries 2 and 5).
The parent cyclohexanone (entry 1) decomposed under the
acidic conditions, but a good yield of enone was obtained by
performing the reaction in ethyl acetate.28 Dehydrogenation of 2-
and 3-substituted cyclohexanones can afford two enone regio-
isomers, and reactions of 2- and 3-phenylcyclohexanone pro-
ceeded with modest (∼3:1) regioselectivity (entries 6 and 7).
The ability to achieve highly regioselective dehydrogenation was
demonstrated in the reactions of two steroid derivatives (entries
8 and 9), each of which afforded one of two possible cyclohex-
enones in excellent yield. In both cases, the regioselectivity
favored formation of the less substituted alkene. No dehydro-
genation of the cyclopentanone fragment was observed in the
reaction leading to 5α-androst-1-ene-3,17-dione (entry 9). The
lower reactivity of cyclopentantones was also evident in the
dehydrogenation of indanone, which afforded the corresponding
enone in 54% yield, with toluene as the optimal solvent (entry
10). In contrast, 1-benzosuberone underwent dehydrogenation
in good yield (81%, entry 11). Cycloheptanone and cycloocta-
none led to a mixture of dehydrogenation products, with 2,6-
cycloheptadien-1-one and 2,7-cyclooctadien-1-one formed as the
major products in 26 and 25% yields, respectively, based on
GC�MS and 1H NMR spectroscopic analysis.

Chromones29 and flavones have important biological activity,30

and the saturated dihydrobenzopyranones are readily prepared via
condensation of simple precursors.31 Aerobic dehydrogenation
reactions to form chromone, 6-fluorochromone,32 and flavone33

proceeded in good yield (entries 12�14). Related N-methyl- and
N-Boc-piperidone derivatives underwent successful dehydrogena-
tion to the corresponding dihydro-4-pyridone derivatives (entries
15 and 16).

Table 1. Catalyst Optimization of Aerobic Oxidative
Dehydrogenation of 4-tert-Butylcyclohexanone 1a

entry PdX2

ligand

(mol %) solvent

2

(%)b
3

(%)b

1 Pd(TFA)2 2-Me2N-pyridine (10)/

TsOH(20)

DMSO 23 33

2 Pd(TFA)2 5,50-Me2bpy (5)/

4 Å MS

PhCl 19 0

3 Pd(OAc)2 DMSO 63 14

4 Pd(TFA)2 DMSO 34 56

5 Pd(TFA)2 HOAc 24 1

6 Pd(OAc)2 DMSO (10) HOAc 86 8

7 Pd(TFA)2 DMSO (10) HOAc 91 8

8 Pd(TFA)2 DMSO (10) Toluene 67 3

9 Pd(TFA)2 DMSO (10) THF 66 8

10 Pd(TFA)2 DMSO (10) Dioxane 84 10

11 Pd(TFA)2 DMSO (10) EtOAc 30 6

12 Pd(TFA)2 DMSO (10) PhCl 11 0

13 Pd(TFA)2 pyridine (10) HOAc 55 2

14 Pd(TFA)2 2-Me2N-pyridine (10) HOAc 3 1

15 Pd(TFA)2 2-F-pyridine (10) HOAc 37 2

16 Pd(TFA)2 bipyridine (5) HOAc 0 0

17 Pd(TFA)2 5,50-Me2bpy (5) HOAc 0 0

18 Pd(TFA)2 phenanthroline (5) HOAc 0 0

19 Pd(TFA)2 1,2-bis(phenylsulfinyl)ethane (5) HOAc 9 4
aConditions: [1] = 0.2M (15.4 mg, 0.1 mmol), 5% PdX2 (0.005mmol),
10% ligand (0.01 mmol), Solvent (0.5 mL), 1 atm O2, 80 �C, 12 h.
bDetermined by GC, external standard = tetradecane.

Figure 1. Comparison of kinetic profiles of Pd(DMSO)2(TFA)2- and Pd(TFA)2/2-Me2Npy-catalyzed dehydrogenation of 1. Reaction conditions:
(A) [1] = 0.2 M (0.1 mmol), Pd(TFA)2 (5 µmol), DMSO (10 µmol), AcOH (0.5 mL), 1 atm O2, 80 �C; (B) [1] = 0.2 M (0.1 mmol), Pd(TFA)2
(5 µmol), 2-Me2Npy (10 µmol), TsOH (20 µmol), DMSO (0.5 mL), 1 atm O2, 80 �C. Int. std. = 1,4-dimethoxybenzene. Error bars represent std. dev.
from 3 indep. measurements.
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Cyclic enones are common intermediates in the synthesis of
natural products, and the aerobic dehydrogenation reactions
described here could find broad utility in this context. For
example, α,α-disubstituted cyclohexenone 4 has been used
as an intermediate in the synthesis of (�)-mersicarpine.34 This
enone was obtained in 85% yield using the Pd(DMSO)2
(TFA)2 catalytic method (eq 1); the original protocol employed
stoichiometric IBX and proceeded in 72% yield.34 Catalytic

Saegusa-type6c and stoichiometric IBX8 oxidationmethods failed
in the synthesis of a cyclopentene-α-dione precursor to the
natural product (�)-terpestacin, and stoichiometric Pd(OAc)2
was used instead.35 Application of an aerobic Pd(TFA)2/DMSO
catalyst system to this reaction afforded the enedione in 90%
yield (eq 2).

In summary, we have identified a PdII catalyst system that
enables direct dehydrogenation of cyclic ketones to the corre-
sponding enones with a number of important substrates. The
high selectivity for enone rather than phenol formation sharply
contrasts other PdII-catalyzed dehydrogenation methods3,13 and
warrants further mechanistic investigation. The ability to replace
stoichiometric reagents (e.g., Br2, organoselenium reagents, and
IBX) with O2 as an oxidant has important implications for large-
scale applications of these methods in pharmaceutical and fine-
chemical synthesis.36
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