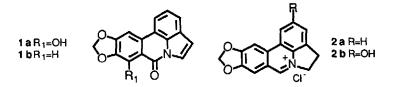
# A New Approach to the Synthesis of AntitumourAlkaloids with the Lycorane Skeleton

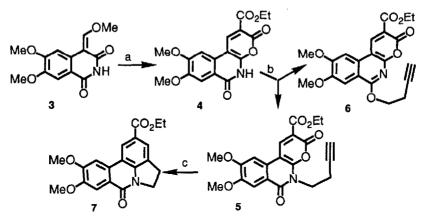

## Dolores Pérez, Enrique Guitlán and Luis Castedo

Dpto. Química Orgánica, Univ. Santiago and Sección de Alcaloides, CSIC. 15706 Santiago de Compostela, Spain.

Key Words: Pyrone-alkyne intramolecular cycloaddition, Lycorane-type Alkaloids.

**Abstract**: A new approach to the synthesis of lycorane-type alkaloids is described. The key step is intramolecular cycloaddition between an α-pyrone and an alkyne.

Kalbretorine **1a**, hyppadine **1b**, anhydrolycorinium chloride **2a** and ungeremine **2b** are Amaryllidaceae alkaloids<sup>1</sup> with a lycorane-type skeleton and very interesting pharmacological properties. Anhydrolycorinium chloride has *in vitro* and *in vivo* antileukaemic activity in test P388,<sup>2</sup> kalbretorine has antitumour activity<sup>3</sup>, ungeremine is active against some types of carcinoma<sup>4</sup> and hyppadine reversibly inhibits fertility in male rats.<sup>5</sup> Although there are several procedures for the synthesis of these alkaloids<sup>1</sup>, they have poor versatility and/or low overall yields.




In connection with work on the synthesis of antitumour benzophenanthridine alkaloids<sup>6</sup> we became interested in the cycloaddition reactions of  $\alpha$ -pyrones. It is known that  $\alpha$ -pyrones react with alkynes and arynes to afford an adduct which loses CO<sub>2</sub> by retro Diels-Alder reaction to yield a benzene derivative<sup>7</sup>. In view of this, we devised the retrosynthetic path from the basic skeleton of compounds 1-2 that is shown in Scheme 1. We report here the preliminary results of pursuing this path in the synthetic direction.



Scheme 1

Pyrone **4** was prepared by the procedure described for certain of its analogues<sup>8</sup>: condensation of 4,5-dimethoxyhomophthalimide with trimethylorthoformate in  $Ac_2O/DMF$  afforded **3**,<sup>9</sup> which by treatment with ethyl cyanoacetate and NaOMe yielded, after acidic work-up, the pyrone **4**.



a) NCCH 2CO2Et, NaOMe, 72%; b) HCCCH 2CH2OTS, t-BuOK, DMF, 93%; c) O2NC6H5, 210 °C, 95%

#### Scheme 2

Alkylation of 4 under unoptimized conditions with 3-butyn-1-tosylate led to an equimolar mixture of 5 and 6 in 93% overall yield. After separation, the O-alkylated product 6 was hydrolyzed to 4 and recycled. Heating the N-alkylated pyrone 5 in refluxing nitrobenzene to force the intramolecular cycloaddition of the pyrone and alkyne components afforded the adduct 7 in 95% yield.<sup>9</sup> Further studies are in course to optimize the yield of the N-alkylation of pyrone 4 and to apply this method to the synthesis of antitumour alkaloids.

## **ACKNOWLEDGEMENTS**

Financial support from the DGICYT (Project No PB87-0663-C02-01) is gratefully acknowledged. We also thank the Spanish Ministry of Education for the award of a research grant to D.P..

#### REFERENCES

- 1.- Martin, S.F. in The Alkaloids vol 30 (Brossi A. Ed.), Academic Press, 1987; pp. 252-376.
- 2. Pettit, G.R.; Gaddamidi, V.; Goswami, A.; Cragg, G.M. J. Nat. Prod. 1984, 47, 796.
- 3. Ghosal, S.; Lochan, R.; Shutosh, A.; Kumar, Y.; Srivastava, R.S. Phytochemistry 1985, 24, 1825.
- 4.- Xu, B.; Chen, J.-T.; Yang, J.-L.; Chang, S.-Y.; Yueh, H.-F.; Wang, T.-W.; Chou, C.-H. in US-China Pharmacology Symposium; Burns, J.J.; Tsuchitani, P.J. Eds; National Academy of Sciences: Washington DC, 1980; p. 151.
- 5. Ghosal, S.; Rao, P.H.; Jaiswal, D.K.; Kumar, Y.; Frahm, A.W. *Phytochemistry* **1981**, *20*, 2003. Chattopadhyay, S.; Chattopadhyay, U.; Mathur, P.P.; Saini, K.S.; Ghosal, S. *J. Med. Plant. Res.* **1983**, *49*, 252.
- 6.- Pérez Meirás, D.; Guitlán, E.; Castedo, L. Tetrahedron Lett. 1990, 31, 143.
- 7.- Ellis, G. in *Comprehensive Heterocyclic Chemistry*; Katritzky, A.; Rees, C.W. Eds.; Pergamon Press: Oxford. 1984; vol. 3, part. 2B, pp. 647-736.
- 8. Wolfbeis, O.S.; Trummer, I.; Knierzinger, A. Liebigs Ann. Chem. 1981, 811.
- All new products afforded correct spectroscopic data. 7: <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 8.57 (s, 1H); 7.96 (s, 1H); 7.92 (s, 1H); 7.60 (s, 1H); 4.53 (t, J=8.2 Hz, 2H); 4.42 (q, J= 7.1 Hz, 2H), 4.12 (s, 3H); 4.05 (s, 3H); 3.46 (t, J=8.2 Hz); 1.45 (t, J=7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>), δ: 166.75; 160.01; 153.42; 150.22; 142.84; 131.08; 128.25; 125.68; 124.49; 122.50; 121.41; 116.10; 108.92; 103.31; 61.13; 56.38; 56.27; 46.94; 27.03; 14.40 ppm. MS m/z (%) : 353 (M<sup>+</sup>, 100), 308 (23).

(Received in UK 9 January 1992)