DOI: 10.1002/ejoc.201001448

2'-Deoxy-2'-a-C-(hydroxymethyl)adenosine as Potential anti-HCV Agent

Natascha Chavain^[a] and Piet Herdewijn*^[a]

Keywords: Nucleosides / Antiviral agents / Radical reactions / HCV

Because of the importance of C-branched nucleosides in the discovery of new antiviral molecules, we decided to synthesize 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine as a potential anti-HCV agent. The synthesis of a new adenosine ana-

Introduction

The naturally occurring *C*-branched nucleoside oxetanocin A (1, Figure 1) is known to exhibit potent anti-HIV-1 activity.^[1–2] It was shown that 2',3'-dideoxy-3'-*C*-(hydroxymethyl) nucleosides (2 and 3, Figure 1) display an anti-HIV-1 activity profile similar to oxetanocin A.^[3–4] These observations have increased the interest in 3'-*C*branched 2',3'-dideoxynucleosides. For example, 1-[2',3'-dideoxy-3'-*C*-(hydroxymethyl)-5'-*O*-trityl- β -*D*-threo-pentofuranosyl]thymine demonstrated selective antiviral activity against HIV-1 (4, Figure 1).^[5]

Figure 1. Potent anti-HIV-1 nucleosides.

Several other branched-chain sugar nucleosides were synthesized and tested for their antiviral activities. $4'-\alpha$ -C-Branched-chain pyrimidine nucleosides were shown to pos-

1140 WILEY I

sess antiviral activities against HSV-1, HSV-2 and HIV-1 in vitro.^[6] A series of 2'-*C*- α -hydroxyalkyl- and 2'-*C*- α -alkyl-cytidines has been synthesised for incorporation into oligonucleosides for studies of group II intron RNA.^[7] In another study, 2'- β -*C*-(hydroxymethyl)adenosine was found to exhibit potent anti-HCV activity (**6**, Figure 2), indicating that the hydroxy group of the 2'-*C*-(hydroxymethyl) substituent does not abolish the anti-HCV activity of 2'-*C*-methyl-adenosine (**7**, Figure 2).^[8] In line with this result, 3'-*C*-(hydroxymethyl)-substituted nucleosides were recently ex-

plored as potential anti-HCV agents (biological tests under

logue following two different synthetic routes is described. The new *C*-branched nucleoside was tested for its antiviral

activity and found to be inactive.

progress).^[9]

Figure 2. 2'-C-Branched nucleoside analogues showing anti-HCV activity.

It is clear that the introduction of a C-(hydroxymethyl) substituent has allowed the discovery of several new nucleoside analogues with antiviral activity. Here we describe the synthesis of 2'-C-(hydroxymethyl)adenosine and tested this adenosine derivative for its antiviral activity. The new modified adenosine was tested for its HCV, HIV and RSV activity.

A variety of procedures for preparing synthetic branched-chain sugar nucleosides have been described. However, the number of 2'-deoxy-2'- α -*C*-branched ribonucleosides reported are limited,^[10–15] and their biological activities have not yet been investigated in a systematic manner, perhaps because of a lack of the availability of efficient synthetic methods leading to 2'-deoxy-2'- α -*C*-branched ribonucleosides.

 [[]a] Katholieke Universiteit Leuven, Faculty of Pharmaceutical Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium Fax: +32-16-337340 E-mail: Piet.Herdewijn@rega.kuleuven.be

Only few publications report the synthesis of 2'-deoxy- $2'-\alpha$ -C-hydroxymethylpyrimidine nucleosides.^[10–15] As far as we know, the synthesis of 2'-deoxy-2'- α -C-(hydroxymethyl)purine nucleosides has not been reported yet. Two schemes are used to synthesize such pyrimidine nucleosides. First, the preparation of 2'-deoxy-2'-α-C-(hydroxymethyl)thymidine,^[10] uridine,^[11] or cytidine,^[12] from the D-ribose sugar was described using a synthetic strategy as previously reported by Schmidt et al.^[13] The second way to synthesize these modified nucleosides involves a radical reaction starting from the corresponding nucleoside. Two radical methods were investigated. The first one consists of a direct introduction of the vinyl or styryl group at the 2' position.^[14] The second one involves a double bond migration on the readily available allyl nucleoside through an ene reaction.^[15] Another possibility, using an intramolecular radical C-C bond formation reaction, as described for the synthesis of branched aldopentopyranosyl nucleosides,^[16] has not been considered yet.

Herein, we report the synthesis of 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine as a potential anti-HCV agent using the two different synthetic routes: the common route starting from D-ribose and a second, more elegant method, starting from adenosine. Both synthetic routes are discussed.

Results

Synthesis of 2'-Deoxy-2'-α-C-(hydroxymethyl)-Dribofuranosyladenosine Starting from D-Ribose

As described by Li et al.,^[12] protected 2-deoxy-2-(hydromethyl)-D-ribofuranose **13** was synthesized starting from D-ribose (Scheme 1). Methyl 3,5-di-*O*-(4-chlorobenzyl)- α -D-ribofuranoside (**10**) was prepared according to the method of Martin et al.^[17] D-Ribose was first fixed in its 1-OMe furanose form. Selective protection of positions 3 and 5 with a *p*-chlorobenzyl group was realized by selective deprotection of position 2 of compound **9** by reaction with tin(IV) chloride. Compound **10** was converted to methyl 3,5-di-*O*-(4-chlorobenzyl)-2-deoxy-2- α -(hydroxymethyl)- α -D-ribofuranoside (**13**) essentially via the same sequence of reactions as described by Li et al.^[12] The major difference

p-CIBnC

was the use of IBX (2-iodoxybenzoic acid) as oxidizing reagent for oxidation of the free alcohol at position 2 into the corresponding ketone 11. This reagent, in fact a precursor of the Dess–Martin periodinane reagent that was initially used, is easier to obtain. It is inexpensive to prepare and easy to handle, can tolerate moisture and water, and gives very good yields. Moreover, IBX can easily be recycled by oxidation of IBA (2-iodobenzoic acid) released during the reaction. Ketone 11 was converted to alkene 12 by a Wittig reaction and then, to the desired hydroxymethyl compound 13 by hydroboration followed by oxidation.

The hydroxymethyl function at position 2 was then benzoylated before condensation of the sugar with N^6 -benzoyladenine following the Vorbrüggen glycosylation procedure.^[18] Two anomers were obtained, which were easily separated by silica gel column chromatography. The stereochemistry of compound **14** was established by a ¹H NOE experiment. Irradiation of the anomeric proton (δ = 6.50 ppm) gave a NOE (2.05%) on the 4'-H, indicating that the obtained compound is a β -anomer. Another indication for the β anomeric configuration is the determination of ${}^{1}J_{C1,H1}$.^[19–20] In our case, we measured on the non ¹H-decoupled ¹³C spectrum a value of 165.9 Hz for ${}^{1}J_{C1,H1}$, characteristic for adenosine (β -anomer) (literature value for adenosine is 165.6 Hz).^[21]

Finally, the nucleoside **14** was deprotected to afford the desired modified adenosine **8**. The order in which the functions are deprotected is important. Indeed, Li and Piccirilli described that attempts to debenzylate the alcohol functions of $2'-\alpha$ -(acetoxymethyl)- N^6 -benzoyl-3',5'-di-O-(4-chlorobenzyl)-2'-deoxycytidine using hydrogen in the presence of Pd/C resulted in deamination of the nucleobase when the amine is benzoylated.^[12] To render the nucleobase less susceptible to reductive deamination, we removed the benzoyl protecting groups before the benzyl protections. Following this procedure, 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine was obtained in 13 steps in a total yield of 9%.

Synthesis of 2'-Deoxy-2'-α-C-(hydroxymethyl)-Dribofuranosyladenosine Starting from Adenosine

2'-(Phenoxythiocarbonyl)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)adenosine (16), obtained by reaction of

p-CIBn(

p-CIBnC

Scheme 1. Synthesis of the 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine starting from D-ribose. (i) methanolic HCl (1%), MeOH; (ii) NaH, DMSO; (iii) 4-chlorobenzyl chloride (isomer mixture, β/α 2:1); (iv) SnCl₄, CH₂Cl₂, 0 °C; v) H₂O; (vi) IBX, acetonitrile, 80 °C; (vii) Ph₃P+CH₃Br⁻, *s*BuLi, THF, -78 °C; (viii) 9-BBN, THF, 40 °C; (ix) NaOH, H₂O₂, 80 °C; (x) BzCl, pyridine; (xi) *N*⁶-benzoyl bis(trimethyl-silyl)adenine, TMSOTf, DCE, reflux; (xii) NH₄OH, MeOH, 50 °C; (xiii) Pd/C, H₂, MeOH.

Scheme 2. Synthesis of the 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine starting from adenosine. (i) TIPSCl, pyridine; (ii) phenyl chlorothionoformate, DMAP, acetonitrile; (iii) tributylstyryltin, AIBN, benzene, 80 °C; (iv) BzCl, pyridine; (v) K₃Fe(CN)₆, K₂CO₃, OsO₄, H₂O/ *t*BuOH (1:1); (vi) NaIO₄, dioxane/H₂O (3:1); (vii) NaBH₄, MeOH; (viii) 3HF·NEt₃, NEt₃, THF; (ix) NH₄OH, MeOH, 50 °C.

3',5'-protected adenosine with phenyl chlorothionocarbonate, was treated with β -(tributylstannyl)styrene. The solvent plays an important role in the radical reaction. Indeed, the desired 2'-deoxy-2'- α -C-styryl-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)adenosine (17) was obtained in dry benzene but not in dry toluene. As reported by De Mesmaeker et al.,^[22] the radical reaction (modified Barton– McCombie reaction) led to a stereoselective introduction of a 2-phenylethenyl group at the α -side of the sugar ring because of the steric hindrance due to the presence of the base at the anomeric position on the β face.

The second main step of this route is the oxidative cleavage of the double bond. For the synthesis of 2'-deoxy-2'- α -C-(hydroxymethyl)pyrimidine nucleosides,^[14–15] the authors performed the oxidative cleavage by ozonolysis. Because ozonolysis is not practical when larger amounts of material are needed, we tried to cleave the double bond by Lemieux-Johnson oxidation using OsO₄, N-methylmorpholine N-oxide (NMMO) and NaIO₄ followed by in situ reduction using NaBH₄.^[23-25] In our case, the conversion of the phenylethenyl group of compound 17 into the hydroxymethyl group was not very efficient following this procedure (10%). To increase the yield of the reaction, the co-oxidant NMMO was replaced by K₃Fe(CN)₆/K₂CO₃, which was identified to be a better co-oxidant system by Minato et al.^[26] and the two oxidation steps were carried out separately by isolating the dihydroxy compound 18. Using this method we obtained the desired product 19 with an increased yield of 45%. It is to notice that the free amine of the adenine base has to be protected before the oxidative cleavage in order to avoid side reactions (Scheme 2).

Finally, the protected nucleoside **19** was deprotected to afford the desired modified adenosine **8**. Following this procedure, 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine was obtained in 9 steps in a total yield of 7%.

Biological Tests

The synthesized 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine was tested for its capacity to inhibit the replication of HCV 1a and 1b (huh-7 cells), HIV (MT4 cells) and RSV (hep2 cells) replicons. Unfortunately, this new adenosine derivative shows no antiviral activity (data not shown) up to $88 \mu M$ against HCV replicons, 53 μM against HIV replicons and 10 μM against RSV replicons.

Discussion

In this paper, we describe the synthesis of 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine. Indeed, a limited number of successful selective substitutions at C-2' are reported^[7,8,10–15] and only few publications report the synthesis of 2'-deoxy-2'-a-C-(hydroxymethyl)pyrimidine nucleosides.^[10-15] This can be explained by the inherent lower reactivity at C-2'. It has been reported that the electronegative anomeric carbon C-1' effectively prevents ionization of a 2'-leaving group to produce a cationic S_N1 intermediate for 2' modification.^[27] Moreover, it is known that the reactivity of the 2'OH group can be potentially influenced by its preferred orientation,^[28] dynamics^[29] and pK_a .^[30] Velikyan et al. reported that the pK_a is dictated by various factors such as the nature and orientation of the aglycon, the sugar conformation and the nature of the vicinal substituent.^[30] A comparison of pK_a values for 2'OH in different nucleosides shows that the 2'-OH in adenosine is the most acidic ($pK_a = 12.17$ vs. 12.62 for uridine for example) because adenine-9-yl is a better stabilizer for the 2'-oxy anion compared to any other aglycons in the studied nucleoside series. This higher acidity might be less favourable to nucleophilic substitution and can partly explain why modification at the 2' position of adenosine is more difficult. Another explanation for the decrease of reactivity at the 2' position of adenosine compared to pyrimidine nucleosides could be the positioning of the heterocyclic base. Indeed, the heterocyclic base at C-1' exerts a major steric and electronic barrier for nucleophiles to attack on C-2'. It has been demonstrated that the N-glycosyl bond in adenosine (1.467 Å) is shorter than those of thymidine (1.480 Å) and cytidine (1.497 Å).^[31] The shorter N-glycosyl bond might contribute to a higher steric barrier.

Two different synthetic routes were explored to synthesize the targeted modified adenosine. The first starts from D-ribose and allows us to obtain the modified nucleoside in 13 steps in a total yield of 9%. The second way involves a radical reaction starting from adenosine. Following this route, the desired nucleoside was obtained in 9 steps in a global yield of 7%.

Initially, a preference could be given to the second route since it involves few steps. But according to the results, the first route seems to be the best one for the synthesis of 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine (better total yield). Indeed, the radical reaction and the oxidative cleavage are not very efficient steps. Moreover, to obtain larger quantities, we repeated these 2 steps several times. This route is only interesting when small amounts of material are required. When larger amounts of material are needed, the first route seems to be appropriate.

Because of its resemblance with compounds 1-7, [1-5,8,32] we tested our new adenosine derivative for its anti-HIV, anti-HCV and anti-RSV activity. Unfortunately, 2'-deoxy-2'- α -*C*-(hydroxymethyl)adenosine did not inhibit the replication of HCV, HIV and RSV replicons.

Conclusions

In conclusion, we synthesized for the first time 2'-deoxy-2'- α -C-(hydroxymethyl)adenosine following two different strategies. The first strategy starting from D-ribose is more interesting than the second route involving a radical reaction directly from adenosine. Despite the number of additional steps, the first way gives a better total yield and in this way, is more interesting when larger amounts of the nucleoside are required.

Experimental Section

Synthesis: Nuclear magnetic resonance (¹H and ¹³C NMR) spectra were recorded at room temperature on a Bruker AC 300 spectrometer. TMS was used as an internal standard and CDCl3 as the solvent. ¹H NMR analyses were obtained at 300 MHz (s: singlet, d: doublet, t: triplet, dd: double doublet, dt: double triplet, q: quadruplet, quint: quintuplet, m: multiplet, AB: diastereotopic protons); whereas ¹³C NMR analyses were obtained at 75.4 MHz, at 125.7 MHz (for 15) or at 150.9 MHz (for 17) (C^{IV}: quaternary carbon). The chemical shifts (δ) are given in parts per million relative to TMS ($\delta = 0.00$ ppm). Exact mass spectra were obtained with a Q-Tof 2TM (Micromass Ltd.) coupled to a CapLCTM system (Waters). Silica gel chromatography was performed on Davisil[®] silica gel 60, 0.630-0.200 mm (Grace Davison). Reactions were monitored by thin-layer chromatography (TLC) on Alugram® silica gel UV254 mesh 60, 0.20 mm (Macherey-Nagel), detection by UV lamp or revelation by phosphomolybdenum cerium sulfate or panisaldehyde. All dry solvents were obtained after appropriate distillation except for DMSO (dimethyl sulfoxide, 99.7%, "Extra Dry", dried with molecular sieves, AcroSeal® was purchased from Acros Organics).

Methyl 2,3,5-Tri-O-(4-chlorobenzyl)-α/β-D-ribofuranoside (9): To a solution of D-ribose (10.0 g, 67 mmol) in dry methanol (120 mL) was added a solution of methanolic HCl (1%, 20 mL). The reaction mixture was stirred at room temperature for 3 d. The solution was neutralized with Na₂CO₃ and the formed solid was filtered. The

filtrate was evaporated under reduced pressure and coevaporates with dry pyridine. The residue was dissolved in dry DMSO (200 mL) and added at 0 °C to a solution of dimsylsodium prepared by adding pentane-washed sodium hydride (16 g, 400 mmol) to dry DMSO (150 mL) and by heating the magnetically stirred suspension to 60 °C for 45 min. The reaction mixture was stirred at room temperature for 5 h. Then, 4-chlorobenzyl chloride (100 mL, 1.11 mol) was added slowly at 0 °C and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with methanol (20 mL) and then water (100 mL). The mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic phases were dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 10% ethyl acetate in hexane to give β -9 as an orange oil (24.2 g, 45 mmol, 67% yield) and then, with 20% ethyl acetate in hexane to give α -9 as an orange oil (9.6 g, 18 mmol, 18% yield).

β-9: ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.25 (m, 12 H, Ar), 4.91 (s, 1 H, 1-H), 4.64 (d, J = 12.2 Hz, 1 H, AB-spin system, C²-O-CH₂), 4.55 (d, J = 12.2 Hz, 1 H, AB-spin system, C²-O-CH₂), 4.54 (d, J = 12.6 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.51 (d, J = 12.6 Hz, 1 H, AB-spin system, C^{5} -O-CH₂), 4.50 (d, J = 12.0 Hz, 1 H, AB-spin system, C^{3} -O-CH₂), 4.43 (d, J = 12.0 Hz, 1 H, ABspin system, C^3 -O-CH₂), 4.30 (q, J = 5.3 Hz, 1 H, 4-H), 4.00 (dd, J = 4.8, 6.7 Hz, 1 H, 3-H), 3.81 (d, J = 4.4 Hz, 1 H, 2-H), 3.59 (dd, J = 4.7, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.50 (dd, J = 4.7, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.35 (s, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 137.1 (Ar, C^{IV}), 136.6 (Ar, C^{IV}), 134.0 (Ar, 2 C^{IV}), 133.6 (Ar, C^{IV}), 132.5 (Ar, C^{IV}), 129.4 (Ar, 4 CH), 129.2 (Ar, 2 CH), 128.9 (Ar, 4 CH), 128.8 (Ar, 2 CH), 106.5 (C¹, CH), 80.7 (C⁴, CH), 80.3 (C², CH), 78.8 (C³, CH), 72.8 (C⁵-O-CH₂, CH₂), 72.0 (C²-O-CH₂, CH₂), 71.9 (C³-O-CH₂, CH₂), 71.6 (C^5, CH_2) , 55.5 (CH₃) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₇H₂₇Cl₃NaO₅ 559.0822; found 559.0813.

α-9: ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.24 (m, 12 H, Ar), 4.89 (d, 1 H, 1-H), 4.64 (d, J = 17.1 Hz, 1 H, AB-spin system, C²-O-CH₂), 4.61 (d, J = 22.0 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.55 (d, J = 17.1 Hz, 1 H, AB-spin system, C²-O-CH₂), 4.53 (d, J= 22.0 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.46 (d, J = 12.2 Hz, 1 H, AB-spin system, C³-O-CH₂), 4.43 (d, J = 12.2 Hz, 1 H, ABspin system, C^3 -O-CH₂), 4.23 (q, J = 3.8 Hz, 1 H, 4-H), 3.78 (s, 1 H, 2-H), 3.77 (d, J = 6.6 Hz, 1 H, 3-H), 3.45 (s, 3 H, CH₃), 3.41 (t, J = 3.2 Hz, 2 H, 5-H) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 137.1 (Ar, C^{IV}), 136.6 (Ar, C^{IV}), 134.0 (Ar, 2 C^{IV}), 131.1 (Ar, CIV), 130.7 (Ar, CIV), 129.7 (Ar, 2 CH), 129.5 (Ar, 2 CH), 129.3 (Ar, 2 CH), 128.9 (Ar, 4 CH), 128.8 (Ar, 2 CH), 102.6 (C¹, CH), 82.1 (C⁴, CH), 78.4 (C², CH), 75.7 (C³, CH), 73.1 (C⁵-O-CH₂, CH₂), 72.1 (C³-O-CH₂, CH₂), 71.9 (C²-O-CH₂, CH₂), 70.5 (C⁵, CH₂), 55.9 (CH₃) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₇H₂₇Cl₃NaO₅ 559.0822; found 559.0812.

Methyl 3,5-Di-O-(4-chlorobenzyl)-*a*-D-ribofuranoside (10): To a cold (0 °C) solution of **9** (930 mg, 1.7 mmol) in dry CH₂Cl₂ (9 mL) was added a 10% (v/v) solution of tin(IV) chloride in dry CH₂Cl₂ (1.9 mL, 1.7 mmol). The reaction mixture was stirred at 0 °C for 6 h. Saturated aqueous NaHCO₃ (10 mL) was then added and extracted with CH₂Cl₂ (3×10 mL). The combined organic phases were dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 20% EtOAc in hexane to give **10** as an orange oil (460 mg, 1.1 mmol, 65% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.21 (m, 8 H, Ar), 4.88 (d, *J* = 4.6 Hz, 1 H, 1-H), 4.69 (d, *J* = 12.6 Hz, 1 H, AB-spin system, C³-O-CH₂), 4.48 (d, *J* = 12.2 Hz, 1 H, AB-

spin system, C⁵-O-CH₂), 4.42 (d, J = 12.2 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.16 (m, 1 H, 4-H), 4.12 (m, 1 H, 2-H), 3.74 (dd, J = 3.2, 7.0 Hz, 1 H, 3-H), 3.48 (s, 3 H, CH₃), 3.46 (dd, J = 4.4, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.41 (dd, J = 4.4, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.41 (dd, J = 4.4, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.41 (dd, J = 4.4, 10.5 Hz, 1 H, AB-spin system, 5-H), 3.41 (dd, J = 4.4, 10.5 Hz, 1 H, AB-spin system, 5-H) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): $\delta = 136.7$ (Ar, C^{IV}), 136.6 (Ar, C^{IV}), 133.9 (Ar, 2 C^{IV}), 129.5 (Ar, 2 CH), 129.3 (Ar, 2 CH), 128.9 (Ar, 4 CH), 103.2 (C¹, CH), 82.1 (C⁴, CH), 76.8 (C³, CH), 73.1 (C⁵-O-CH₂, CH₂), 72.5 (C³-O-CH₂, CH₂), 72.1 (C², CH), 70.4 (C⁵, CH₂), 56.0 (CH₃) ppm. HRMS (ESI) *m*/*z* [M + Na]⁺ calcd. for C₂₀H₂₂Cl₂NaO₅ 435.0742; found 435.0743.

Methyl 3,5-Di-O-(4-chlorobenzyl)-2-oxo-α-D-ribofuranoside (11): Previously synthesized IBX (5.0 g, 17.9 mmol) was added to a solution of 10 (3.43 g, 8.3 mmol) in acetonitrile (80 mL). The reaction mixture was stirred at 80 °C for 3 h. The solid was filtered and washed with EtOAc (3×50 mL). The filtrate was washed with saturated aqueous Na₂S₂O₃ (50 mL), saturated aqueous NaHCO₃ (50 mL) and brine (50 mL). The organic layer was dried with Na₂SO₄ and the solvents were evaporated under reduced pressure to give 11 as an orange oil (3.3 g, 8.0 mmol, 97% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.22 (m, 8 H, Ar), 4.91 (d, J = 11.9 Hz, 1 H, AB-spin system, C3-O-CH2), 4.83 (s, 1 H, 1-H), 4.64 (d, J = 11.9 Hz, 1 H, AB-spin system, C³-O-CH₂), 4.55 (d, J =12.1 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.45 (d, J = 12.1 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.31 (dt, J = 2.9, 8.1 Hz, 1 H, 4-H), 4.09 (d, *J* = 8.3 Hz, 1 H, 3-H), 3.66 (dd, *J* = 3.5, 11.2 Hz, 1 H, AB-spin system, 5-H), 3.62 (dd, J = 3.5, 11.2 Hz, 1 H, AB-spin system, 5-H), 3.48 (s, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 207.9 (C², C^{IV}), 136.3 (Ar, C^{IV}), 135.8 (Ar, C^{IV}), 134.3 (Ar, C^{IV}), 134.0 (Ar, C^{IV}), 129.8 (Ar, 2 CH), 129.3 (Ar, 2 CH), 129.0 (Ar, 2 CH), 99.0 (C¹, CH), 78.1 (C⁴, CH), 75.8 (C³, CH), 73.1 (C⁵-O-CH₂, CH₂), 72.1 (C³-O-CH₂, CH₂), 68.6 (C⁵, CH₂), 56.2 (CH₃) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₀H₂₀Cl₂NaO₅ 433.0585; found 433.0608.

Methyl 3,5-Di-O-(4-chlorobenzyl)-2-methylene-α-D-ribofuranoside (12): sBuLi (1.4 M in cyclohexane, 13.2 mL, 18.5 mmol) was added to a suspension of triphenylmethylphosphonium bromide (6.3 g, 17.6 mmol) in dry THF (32 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h and then, a solution of 11 (3.3 g, 8.0 mmol) in dry THF (16 mL) was added dropwise at -78 °C. The reaction mixture was stirred at room temperature overnight. The solid was filtered and washed with diethyl ether $(3 \times 50 \text{ mL})$. The filtrate was washed with saturated aqueous NH₄Cl (50 mL) and brine (50 mL). The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 20% ethyl acetate in hexane to give 12 as an orange oil (1.6 g, 3.9 mmol, 49% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.27 (m, 8 H, Ar), 5.46 (s, 1 H, C²-CH₂), 5.39 (s, 1 H, C²-CH₂), 5.24 (s, 1 H, 1-H), 4.61 (d, J =11.9 Hz, 1 H, AB-spin system, C^3 -O-CH₂), 4.53 (d, J = 15.1 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.51 (d, J = 11.9 Hz, 1 H, ABspin system, C^3 -O-CH₂), 4.48 (d, J = 15.1 Hz, 1 H, AB-spin system, C⁵-O-CH₂), 4.27 (s, 2 H, H3, 4-H), 3.56 (s, 2 H, 5-H), 3.44 (s, 3 H, CH₃) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 205.9 (C², C^{IV}), 136.9 (Ar, C^{IV}), 136.8 (Ar, C^{IV}), 133.8 (Ar, 2 C^{IV}), 129.8 (Ar, 2 CH), 129.3 (Ar, 2 CH), 129.0 (Ar, 4 CH), 114.7 (C₂=CH₂, CH₂), 104.5 (C¹, CH), 81.3 (C³, CH), 79.0 (C⁴, CH), 73.0 (C⁵-O-CH₂, CH₂), 70.3 (C³-O-CH₂, CH₂), 70.2 (C⁵, CH₂), 55.2 (CH₃) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₁H₂₂Cl₂NaO₄ 431.0793; found 431.00814.

Methyl 3,5-Di-*O*-(4-chlorobenzyl)-2-deoxy-2-α-(hydroxymethyl)-α-D-ribofuranoside (13): 12 (1 g, 2.4 mmol) was dissolved in 9-BBN solution (0.5 M in THF, 12 mL, 6.0 mmol). The reaction mixture was stirred at room temperature for 3 h, at 40 °C for 16 h and finally at room temperature for 1 h. While cooling the reaction at 0 °C, 6 м aqueous NaOH (4 mL, 30.0 mmol) was added dropwise to the solution followed by H_2O_2 solution (35%, 6 mL, 68.6 mmol). The resulting mixture was warmed to room temperature during 1 h and then, stirred at 80 °C for 2 h. The solution was concentrated under reduced pressure. The residue was diluted in CH₂Cl₂ (50 mL) and washed with brine $(3 \times 50 \text{ mL})$. The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 50% EtOAc in hexane to give 13 as an orange oil (590 mg, 1.4 mmol, 58% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.28 (m, 8 H, Ar), 5.02 (d, J = 5.1 Hz, 1 H, 1-H), 4.56 (d, J = 12.6 Hz, 1 H, AB-spin system, C^3 -O-CH₂), 4.50 (d, J = 12.4 Hz, 1 H, C^5 -O-CH₂), 4.45 (d, J = 12.4 Hz, 1 H, C⁵-O-CH₂), 4.44 (d, J = 12.5 Hz, 1 H, AB-spin system, C^3 -O-CH₂), 4.26 (dd, J = 4.9, 8.2 Hz, 1 H, 4-H), 3.94 (dd, J = 3.2, 7.6 Hz, 1 H, 3-H), 3.91 (d, J = 7.6 Hz, 2 H, CH₂OH), 3.46 (dd, J = 4.7, 10.4 Hz, 1 H, AB-spin system, 5-H), 3.40 (s, 3 H, CH_3), 3.39 (dd, J = 4.7, 10.4 Hz, 1 H, AB-spin system, 5-H), 2.29 (quint, J = 6.6 Hz, 1 H, 2-H) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 136.7 (Ar, 2 C^{IV}), 133.9 (Ar, 2 C^{IV}), 129.5 (Ar, 2 CH), 129.4 (Ar, 2 CH), 128.9 (Ar, 4 CH), 105.7 (C1, CH), 83.2 (C4, CH), 79.2 (C³, CH), 73.1 (C⁵-O-CH₂, CH₂), 71.6 (C³-O-CH₂, CH₂), 70.8 (C⁵, CH₂), 58.2 (CH₂OH), 55.9 (CH₃), 49.3 (C², CH) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₁H₂₄Cl₂NaO₅ 449.0898; found 449.0899.

Methyl N^6 -Benzoyl-2'- α -(benzoyloxymethyl)-3',5'-di-O-(4-chlorobenzyl)-2'-deoxyadenosine (14): To a solution containing 13 (1.4 g, 3.3 mmol) in dry pyridine (45 mL) was added benzoyl chloride (710 µL, 6.2 mmol). The reaction mixture was stirred at room temperature for 5 h. The solution was evaporated under reduced pressure and the residue was dissolved in CH₂Cl₂ (50 mL). The organic layer was washed with saturated NaHCO₃ (50 mL) and brine (50 mL), dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 10% ethyl acetate in hexane followed by 30% ethyl acetate in hexane to give methyl 2-a-(benzoyloxymethyl)-3,5-di-O-(4-chlorobenzyl)-2-deoxy-a-D-ribofuranoside as a colourless oil. A mixture of previously synthesized N^6 -benzoyladenine (3.4 g, 14.3 mmol), 1,1,1,3,3,3-hexamethyldisilazane (HMDS) (27 mL) and (NH₄)₂SO₄ (catalytic amount) was heated under argon at 140 °C overnight. HMDS was evaporated under reduced pressure and carefully putted under argon in order to avoid the degradation of the persilvlated base. A methyl 2-a-(benzoyloxymethyl)-3,5-di-*O*-(4-chlorobenzyl)-2-deoxy-α-D-ribofuranoside (1.7 g, 3.2 mmol) solution in dry 1,2-dichloroethane (40 mL) was added to the obtained N^6 -benzoyl-bis(trimethylsilyl)adenine. To this solution was added TMSOTf (680 µL, 3.8 mmol). The reaction mixture was heated at 80 °C for 5 h. Saturated aqueous NaHCO₃ (50 mL) was added to the solution, which was then extracted with CH₂Cl₂ $(3 \times 50 \text{ mL})$. The organic layer was washed with water (50 mL), dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 3% methanol in CH₂Cl₂ to give 14 as a white solid (930 mg, 1.3 mmol, 39% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.66 (s, 1 H, H8), 8.35 (s, 1 H, 2-H), 8.07 (d, J = 4.2 Hz, 4 H, Ar), 7.59 (quint, J = 4.5 Hz, 2 H, Ar), 7.52 (t, J = 4.5 Hz, 2 H, Ar), 7.45 (m, 2 H, Ar), 7.28 (m, 8 H, Ar), 6.50 (d, J = 8.1 Hz, 1 H, 1'-H), 4.76 (q, J = 5.8 Hz, 1 H, AB-spin system, CH₂-OBz), 4.62 (d, J = 7.1 Hz, 1 H, AB-spin system, $C^{3'}$ -O-CH₂), 4.60 (d, J = 7.1 Hz, 1 H, AB-spin system, $C^{5'}$ -O-CH₂), 4.58 (t, J = 6.2 Hz, 1 H, AB-spin system, CH₂-OBz), 4.51 (d, J = 7.1 Hz, 1 H, AB-spin system, C^{5'}-O-CH₂), 4.49

(d, J = 7.1 Hz, 1 H, AB-spin system, C^{3'}-O-CH₂), 4.43 (m, 1 H, 4'-H), 4.36 (dd, J = 1.8, 5.7 Hz, 1 H, 3'-H), 3.78 (dd, J = 4.5, 10.4 Hz, 1 H, AB-spin system, 5'-H), 3.62 (dd, J = 3.3, 10.2 Hz, 1 H, AB-spin system, 5'-H), 3.61 (m, 1 H, 2'-H) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): $\delta = 170.7$ (C=O, C^{IV}), 166.0 (C=O, C^{IV}), 152.2 (C8, CH), 151.7 (C⁴, C^{IV}), 149.7 (C⁶, C^{IV}), 141.6 (C², CH), 135.7 (Ar, CH), 135.4 (Ar, C^{IV}), 134.0 (Ar, C^{IV}), 133.9 (Ar, C^{IV}), 133.4 (Ar, CH), 133.2 (Ar, C^{IV}), 132.8 (Ar, C^{IV}), 130.0 (Ar, CH), 129.8 (Ar, CH), 129.6 (Ar, CH), 129.5 (Ar, CH), 129.2 (Ar, 2 CH), 129.1 (Ar, CH), 128.9 (Ar, CH), 128.8 (Ar, 2 CH), 128.7 (Ar, 2 CH), 128.6 (Ar, CH), 128.4 (Ar, CH), 128.3 (Ar, 3 CH), 123.1 (C⁵, C^{IV}), 87.4 (C^{1'}, CH), 82.9 (C^{4'}, CH), 79.5 (C^{3'}, CH), 72.9 (C^{5'}-O-CH₂, CH₂), 71.0 (C^{3'}-O-CH₂, CH₂), 70.1 (C^{5'}, CH₂), 60.9 (CH₂-OBz, CH₂), 47.1 (C^{2'}, CH) ppm. HRMS (ESI) *m*/*z* [M + H]⁺ calcd. for C₃₉H₃₃Cl₂N₅O₆ 738.1886; found 738.1888.

Methyl 3',5'-Di-O-(4-chlorobenzyl)-2'-deoxy-2'-α-(hydroxymethyl)adenosine (15): A solution containing 14 (22 mg, 0.03 mmol) in ammoniac solution in MeOH (7 M, 2 mL) was stirred at 50 °C in a sealed flask overnight. The solvent was evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 5% methanol in dichloromethane to give 15 as a yellow oil (16 mg, 0.03 mmol, quantitative). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.28 (s, 1 H, H8), 8.02 (s, 1 H, 2-H), 7.32 (dd, *J* = 2.1, 8.6 Hz, 4 H, Ar), 7.26 (d, *J* = 4.2 Hz, 2 H, Ar), 7.20 (d, *J* = 8.5 Hz, 2 H, Ar), 6.37 (d, J = 7.6 Hz, 1 H, 1'-H), 5.78 (s, 2 H, NH₂), 4.62 (d, J = 10.1 Hz, 1 H, AB-spin system, C^{3'}-O-CH₂), 4.50 (s, 1 H, AB-spin system, $C^{5'}$ -O-CH₂), 4.48 (d, J = 10.1 Hz, 1 H, AB-spin system, C^{3'}-O-CH₂), 4.37 (m, 2 H, 3'-H, 4'-H), 3.99 (dd, J = 5.4, 11.9 Hz, 1 H, AB-spin system, CH₂OH), 3.89 (dd, J = 5.4,11.9 Hz, 1 H, AB-spin system, CH₂OH), 3.72 (dd, J = 4.8, 10.1 Hz, 1 H, AB-spin system, 5'-H), 3.60 (dd, J = 3.9, 10.1 Hz, 1 H, ABspin system, 5'-H), 3.24 (quint, J = 13.4 Hz, 1 H, 2'-H) ppm. ¹³C NMR (125.7 MHz, CDCl₃, 25 °C): δ = 155.4 (C⁴, C^{IV}), 152.8 (C8, CH), 149.4 (C⁶, C^{IV}), 139.3 (C², CH), 135.9 (Ar, C^{IV}), 135.5 (Ar, C^{IV}), 134.0 (Ar, C^{IV}), 133.8 (Ar, C^{IV}), 129.2 (Ar, 2 CH), 129.1 (Ar, 2 CH), 128.8 (Ar, 2 CH), 128.7 (Ar, 2 CH), 120.1 (C⁵, C^{IV}), 87.5 (C^{1'}, CH), 83.1 (C^{3'}, CH), 81.4 (C^{4'}, CH), 72.9 (C^{5'}-O-CH₂, CH₂), 71.2 (C^{3'}-O-CH₂, CH₂), 70.2 (C^{5'}, CH₂), 58.8 (CH₂OH, CH₂), 49.5 $(C^{2'}, CH)$ ppm. HRMS (ESI) m/z [M + H]⁺ calcd. for C₂₅H₂₆Cl₂N₅O₄ 530.1362; found 530.1354.

2'-Deoxy-2'-C-α-(hydroxymethyl)adenosine (8) from 15: Compound 15 (13 mg, 0.024 mmol) was dissolved in MeOH (2 mL). To this solution was added Pd/C 10% (catalytic amount). The reaction mixture was stirred under hydrogen atmosphere at room temperature for 24 h. The catalyst was filtered off and washed with MeOH. The solvent was removed under reduced pressure. The residue was purified on silica gel chromatography eluting with 10% methanol in dichloromethane to give 8 as a white solid (5 mg, 0.018 mmol, 74% yield). ¹H NMR (300 MHz, [D₄]MeOD, 25 °C): δ = 8.29 (s, 1 H, H8), 8.17 (s, 1 H, 2-H), 6.18 (d, J = 8.8 Hz, 1 H, 1'-H), 4.56 (d, J = 4.2 Hz, 1 H, 3'-H), 4.12 (d, J = 1.6 Hz, 1 H, 4'-H), 3.96 (dd, $J = 6.5, 11.3 \text{ Hz}, 1 \text{ H}, \text{AB-spin system}, \text{CH}_2\text{OH}), 3.86 \text{ (dd, } J = 2.9,$ 12.4 Hz, 1 H, 5'-H), 3.75 (dd, J = 2.9, 12.4 Hz, 1 H, 5'-H), 3.74 (dd, J = 6.5, 11.3 Hz, 1 H, AB-spin system, CH₂OH), 3.18 (quint, J = 7.4 Hz, 1 H, 2'-H) ppm. ¹³C NMR (75.4 MHz, [D₄]MeOD, 25 °C): δ = 157.5 (C⁴, C^{IV}), 153.3 (C8, CH), 150.1 (C⁶, C^{IV}), 142.1 (C², CH), 121.0 (C⁵, C^{IV}), 90.3 (C^{4'}, CH), 90.2 (C^{1'}, CH), 74.1 (C^{3'}, CH), 64.0 (C^{5'}, CH₂), 59.1 (CH₂OH, CH₂), 51.8 (C^{2'}, CH) ppm. HRMS (ESI) m/z [M + H]⁺ calcd. for C₁₁H₁₆N₅O₄ 282.1202; found 282.1218.

2'-(Phenoxythiocarbonyl)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)adenosine (16): To a solution containing adenosine (2 g, 7.5 mmol) in dry pyridine (60 mL) was added 1,1,3,3-tetraisopropyldisiloxane (2.4 mL, 7.7 mmol). The reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure and the residue was partitioned between EtOAc (50 mL) and water (50 mL). The organic layer was washed with cold aqueous HCl (1 M, 25 mL) and saturated aqueous NaHCO3 (50 mL). The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was dried under vacuum and dissolved in dry acetonitrile (90 mL). DMAP (2.1 g, 17.2 mmol) and phenyl chlorothionoformate (1.6 mL, 11.9 mmol) were added to the solution and the reaction mixture was stirred at room temperature overnight. The solvent was evaporated under reduced pressure and the residue was dissolved in CH₂Cl₂ (50 mL), washed with water (50 mL), dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 5% methanol in dichloromethane to give 16 as a white solid (3.8 g, 5.9 mmol, 78% yield). ¹H NMR (300 MHz, $CDCl_3$, 25 °C): δ = 8.30 (s, 1 H, H8), 7.97 (s, 1 H, 2-H), 7.43 (t, J = 7.5 Hz, 1 H, Ar), 7.30 (t, J = 7.4 Hz, 1 H, Ar), 7.13 (d, J = 8.0 Hz, 1 H, Ar), 6.38 (d, J = 3.5 Hz, 1 H, 2'-H), 6.16 (s, 1 H, 1'-H), 5.77 (s, 2 H, NH₂), 5.37 (dd, J = 5.3, 8.6 Hz, 1 H, 3'-H), 4.19 (dd, J = 2.5, 12.6 Hz, 1 H, AB-spin system, 5'-H), 4.12 (dt, J = 2.6, 9.1 Hz, 1 H, 4'-H), 4.05 (dd, J = 2.5, 12.6 Hz, 1 H, AB-spin system, 5'-H), 1.12 (s, 4 H, *i*Pr), 1.09 (s, 24 H, *i*Pr) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 194.1 (C=S, C^{IV}), 155.7 (Ar, C^{IV}), 153.5 (C⁴, C^{IV}), 153.4 (C8, CH), 149.4 (C⁶, C^{IV}), 139.7 (C², CH), 129.7 (Ar, 2 CH), 126.8 (Ar, CH), 121.8 (Ar, 2 CH), 120.4 (C5, C^{IV}), 87.4 (C^{1'}, CH), 84.2 (C^{2'}, CH), 82.2 (C^{4'}, CH), 69.6 (C^{3'}, CH), 60.6 (C^{5'}, CH₂), 17.5 (*i*Pr, 2 CH₃), 17.4 (*i*Pr, 2 CH₃), 17.3 (*i*Pr, CH₃), 17.2 (iPr, 2 CH₃), 17.1 (iPr, CH₃), 13.4 (iPr, CH), 13.1 (iPr, CH), 13.0 (*i*Pr, 2 CH) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₂₉H₄₃N₅NaO₆SSi₂ 668.2370; found 668.2274.

2'-Deoxy-2'-a-C-styryl-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3diyl)adenosine (17): AIBN (250 mg, 1.5 mmol) and 16 (1 g, 1.5 mmol) were dried in dry benzene (10 mL). Styryl tributyltin (2.5 mL, 20 mmol) was added dropwise to the solution at 40 °C. The reaction mixture was heated at 80 °C. After 50 h, the reaction was cooled to room temperature and the solvent was evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 5% methanol in CH₂Cl₂ to give 17 as a white solid (371 mg, 0.62 mmol, 42% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.34 (s, 1 H, H8), 8.05 (s, 1 H, 2-H), 7.28 (m, 5 H, Ar), 6.51 (d, *J* = 16.1 Hz, 1 H, H7'), 6.42 (dd, *J* = 4.2, 8.1 Hz, 1 H, 6'-H), 6.40 (s, 2 H, NH₂), 6.17 (d, J = 2.7 Hz, 1 H, 1'-H), 4.87 (dd, J = 3.0, 3.6 Hz, 1 H, 3'-H), 4.17 (m, 1 H, 4'-H), 4.11 (m, 2 H, 5'-H), 3.68 (dd, J = 3.9, 6.9 Hz, 1 H, 2'-H), 1.10 (s, 6 H, 2 CH₃), 1.08 (s, 6 H, 2 CH₃), 1.07 (s, 6 H, 2 CH₃), 1.06 (s, 6 H, 2 CH₃), 1.01 (s, 2 H, 2 CH), 1.00 (s, 2 H, 2 CH) ppm. ¹³C NMR (150.9 MHz, CDCl₃, 25 °C): δ = 155.6 (C⁴, C^{IV}), 153.1 (C8, CH), 149.7 (C⁶, C^{IV}), 139.1 (C², CH), 136.6 (C8', C^{IV}), 134.5 (C7', CH), 129.5 (Ar, CH), 128.5 (Ar, 2 CH), 126.3 (Ar, 2 CH), 122.7 (C6', CH), 120.2 (C⁵, C^{IV}), 87.5 (C^{1'}, CH), 85.2 (C^{4'}, CH), 73.0 (C^{3'} CH), 62.8 (C^{5'}, CH₂), 51.5 (C^{2'}, CH), 17.5 (CH₃), 17.4 (CH₃), 17.3 (CH₃), 17.2 (CH₃), 17.1 (CH₃), 17.0 (CH₃), 16.9 (CH₃), 16.8 (CH₃), 13.3 (CH), 13.2 (CH), 12.9 (CH), 12.7 (CH) ppm. HRMS (ESI) m/z $[M + Na]^+$ calcd. for $C_{30}H_{45}N_5NaO_4Si_2$ 618.2908; found 618.2962.

 N^6 -Benzoyl-2'-deoxy-2'-α-C-(1-phenylethane-1,2-diol)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)adenosine (18): To a solution containing 17 (1.4 g, 2.3 mmol) in dry pyridine (30 mL) was added benzoyl chloride (280 μL, 2.4 mmol). The reaction was stirred at room temperature for 5 h. The solvent was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (50 mL) and washed with saturated aqueous NaHCO₃ (3 × 50 mL). The organic layer was dried with Na₂SO₄ and evaporate under reduced pressure. The residue was purified on silica gel chromatography eluting with 1% methanol in CH₂Cl₂ to give N^6 -benzoyl-2'deoxy-2'-a-C-styryl-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3diyl)adenosine as an orange oil. The purified product (800 mg, 1.1 mmol) was dissolved in tBuOH (10 mL) and added dropwise at 0 °C to a solution of $K_3Fe(CN)_6$ (1.1 g, 3.3 mmol), K_2CO_3 (470 mg, 3.3 mmol) and OsO₄ (2.5% in tBuOH, 320 µL, 0.025 mmol). The reaction mixture was stirred at 0 °C to 4 °C during 24 h. Na₂SO₃ (in large excess) was added to the reaction mixture. After 10 min, the solution was extracted with CH₂Cl₂ $(3 \times 50 \text{ mL})$. The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 2% methanol in CH₂Cl₂ to give 18 as a brown oil (678 mg, 0.9 mmol, 84% yield). ¹H NMR (300 MHz, $CDCl_3$, 25 °C): δ = 9.07 (s, 1 H, NH), 8.76 (s, 1 H, H8), 8.20 (s, 1 H, 2-H), 8.02 (d, J = 7.1 Hz, 2 H, Ar), 7.85 (d, J = 7.1 Hz, 1 H, Ar), 7.61 (t, J = 7.3 Hz, 1 H, Ar), 7.52 (t, J = 7.4 Hz, 2 H, Ar), 7.38 (m, 4 H, Ar), 7.20 (m, 3 H, Ar), 6.22 (s, 1 H, H7'), 5.81 (d, J = 5.1 Hz, 1 H, 1'-H), 5.22 (dd, J = 5.2, 8.8 Hz, 1 H, 3'-H), 4.12 (m, 5 H, 2'-H, 4'-H, 5'-H), 1.10 (s, 12 H, 4 CH₃), 1.09 (s, 12 H, 4 CH₃), 1.08 (s, 4 H, 4 CH) ppm. HRMS (ESI) *m*/*z* [M + Na]⁺ calcd. for C37H51N5NaO7Si2 756.3225; found 756.3133.

N⁶-Benzoyl-2'-deoxy-2'-C-α-(hydroxymethyl)-3',5'-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)adenosine (19): Compound 18 (180 mg, 0.25 mmol) was dissolved in dioxane (3 mL). At 0 °C, a solution of NaIO₄ (550 mg, 0.73 mmol) in water (1 mL) was added dropwise. The reaction mixture was stirred at 0 °C for 2 h and then, at room temperature for 6 h. The reaction was quenched with water (10 mL) and extracted with EtOAc (3×10 mL). The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was dissolved in dry MeOH (3 mL). NaBH₄ (10 mg, 0.27 mmol) was added and the reaction was stirred at room temperature for 30 min. The reaction was quenched with brine (10 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel chromatography eluting with 2% methanol in dichloromethane to give 19 as a white solid (80 mg, 0.13 mmol, 51% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 9.35 (s, 1 H, NH), 8.74 (s, 1 H, H8), 8.17 (s, 1 H, 2-H), 8.04 (d, J = 7.5 Hz, 2 H, Ar), 7.59 (d, J = 7.1 Hz, 1 H, Ar), 7.52 (t, J = 7.3 Hz, 2 H, Ar), 6.27 (d, J = 3.9 Hz, 1 H, 1'-H), 5.11 (t, J = 6.5 Hz, 1 H, 3'-H), 4.08 (m, 3 H, 4'-H, 5'-H), 4.07 (s, 2 H, CH₂OH), 3.12 (q, J = 4.2 Hz, 1 H, 2'-H), 1.09 (s, 12 H, 4 CH₃), 1.07 (s, 12 H, 4 CH₃), 1.02 (s, 4 H, 4 CH) ppm. ¹³C NMR (75.4 MHz, CDCl₃, 25 °C): δ = 165.0 (C=O, C^{IV}), 152.6 (C⁴, C^{IV}), 151.2 (C8, CH), 149.8 (C⁶, C^{IV}), 141.9 (C², CH), 133.8 (Ar, C^{IV}), 132.9 (Ar, CH), 128.9 (Ar, 2 CH), 128.1 (Ar, 2 CH), 123.8 (C⁵, C^{IV}), 86.8 (C^{1'}, CH), 84.9 (C^{4'}, CH), 72.8 (C^{3'}, CH), 62.6 (C^{5'}, CH₂), 60.3 (CH₂OH, CH₂), 49.3 (C^{2'}, CH), 17.6 (CH₃), 17.4 (2 CH₃), 17.3 (CH₃), 17.2 (2 CH₃), 17.1 (CH₃), 17.0 (CH₃), 13.5 (CH), 13.3 (CH), 12.9 (CH), 12.8 (CH) ppm. HRMS (ESI) m/z [M + Na]⁺ calcd. for C₃₀H₄₅N₅NaO₆Si₂ 650.2806; found 650.2497.

2'-Deoxy-2'-C-α-(hydroxymethyl)adenosine (8) from 19: Compound **19** (80 mg, 0.13 mmol) was dissolved in dry THF (4 mL). To this solution were added 3HF·NEt₃ (100 µL, 0.61 mmol) and NEt₃ (270 µL, 1.94 mmol). The reaction mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure. The residue was dissolved in 7 m NH₃ in MeOH (2 mL, 14 mmol). The reaction was stirred at 50 °C overnight in a screwcap-sealed reactor. The solvent was removed under reduced pressure. The residue was purified on silica gel chromatography eluting with 20% methanol in dichloromethane to give **8** as a white solid (18 mg, 0.06 mmol, 46% yield). ¹H NMR (300 MHz, [D₄]MeOD, 25 °C): δ = 8.29 (s, 1 H, H8), 8.17 (s, 1 H, 2-H), 6.18 (d, *J* = 8.7 Hz, 1 H, 1'-H), 4.57 (t, *J* = 5.6 Hz, 1 H, 3'-H), 4.13 (d, *J* = 1.6 Hz, 1 H, 4'-H), 3.97 (dd, *J* = 6.5, 11.3 Hz, 1 H, AB-spin system, CH₂OH), 3.87 (dd, *J* = 2.9, 12.4 Hz, 1 H, 5'-H), 3.75 (dd, *J* = 2.9, 12.4 Hz, 1 H, 5'-H), 3.75 (dd, *J* = 2.9, 12.4 Hz, 1 H, 2'-H) ppm. ¹³C NMR (75.4 MHz, [D₄]MeOD, 25 °C): δ = 157.5 (C⁴, C^{IV}), 153.3 (C8, CH), 150.1 (C⁶, C^{IV}), 142.1 (C², CH), 121.0 (C⁵, C^{IV}), 90.3 (C^{4'}, CH), 90.2 (C^{1'}, CH), 74.1 (C^{3'}, CH), 64.0 (C^{5'}, CH₂), 59.1 (CH₂OH, CH₂), 51.8 (C^{2'}, CH) ppm. HRMS (ESI) *m*/*z* [M + Na]⁺ calcd. for C₁₁H₁₅N₅NaO₄ 304.1022; found 304.1001.

Biological Tests: The methods used for the evaluation of the antiviral activity have been described previously.^[33–35]

Acknowledgments

We would like to thank Prof. Jef Rozenski for providing HRMS analytical data, Dr Shrinivas Dumbre for technical and scientific advice, Luc Baudemprez for recording ¹³C NMR spectra and the ¹H NOE experiment on the 500 and 600 MHz spectrometers and Richard Mackman (Gilead Sciences) for determining the antiviral activities.

- H. Hoshino, N. Shimizu, N. Shimada, T. Takita, T. Takeuchi, J. Antibiot. 1987, 40, 1077–1078.
- [2] J. Seki, N. Shimada, K. Takahashi, T. Takita, T. Takeuchi, H. Hoshino, Antimicrob. Agents Chemother. 1989, 33, 773–775.
- [3] L. Svansson, I. Kvarnström, B. Classon, B. Sammuelson, J. Org. Chem. 1991, 56, 2993–2997.
- [4] C. K.-H. Tseng, V. E. Marquez, G. W. A. Milne, R. J. Wysocki, H. Mitsuya, T. Shirasaki, J. A. Driscoll, *J. Med. Chem.* 1991, 34, 343–349.
- [5] J. Wengel, R. F. Schinazi, M. H. Caruthers, *Bioorg. Med. Chem.* 1995, 3, 1223–1229.
- [6] M. Nomura, S. Shuto, M. Tanaka, T. Sasaki, S. Mori, S. Shigeta, A. Matsuda, J. Med. Chem. 1999, 42, 2901–2908.
- [7] N.-S. Li, J. A. Piccirilli, J. Org. Chem. 2007, 72, 1198-1210.
- [8] B. N. Yoo, H. O. Kim, H. R. Moon, S. K. Seol, S. K. Jang, K. M. Lee, L. S. Jeong, *Bioorg. Med. Chem. Lett.* 2006, 16, 4190–4194.
- [9] X. Pei, W. J. Choi, Y. M. Kim, L. X. Zhao, L. S. Jeong, Arch. Pharmacal Res. 2008, 31, 843–849.
- [10] C. G. Peng, M. J. Damha, Nucleic Acids Res. 2005, 33, 7019– 7028.
- [11] C. Andersen, S. L. Pedersen, P. Nielsen, Nucleosides Nucleotides Nucleic Acids 2007, 26, 1435–1438.
- [12] N.-S. Li, J. A. Picirrilli, J. Org. Chem. 2004, 69, 4751-4759.
- [13] C. Schmidt, Synlett 1994, 238-240.
- [14] M. Sukeda, S. Shuto, I. Sugimoto, S. Ichikawa, A. Matsuda, J. Org. Chem. 2000, 65, 8988–8996.
- [15] J. B. J. Pavey, A. J. Lawrence, A. J. Potter, R. Cosstick, I. A. O'Neil, *Tetrahedron Lett.* **1998**, *39*, 6967–6970.
- [16] B. Doboszewski, H. De Winter, A. van Aerschot, P. Herdewijn, *Tetrahedron* 1995, 51, 12319–12336.
- [17] O. R. Martin, K. G. Kurz, S. P. Rao, J. Org. Chem. 1987, 52, 2922–2925.
- [18] U. Niedballa, H. Vorbrüggen, Angew. Chem. 1970, 82, 449; Angew. Chem. Int. Ed. Engl. 1970, 9, 461–462.
- [19] H. Budzikiewicz, R. Pereda-Miranda, D. Rosas-Ranúrez, J. Castañeda-Gómez, in: *Progress in the chemistry of organic nat-ural products*, vol. 92 (Eds.: A. D. Kingkorn, H. Falk, J. Kobayashi), Springer, Wien, New York, **2010**, pp. 126–128.
- [20] W. A. Bubb, Concepts Magn. Reson. Part A 2003, 19, 1-19.
- [21] T. Bandyopadhyay, J. Wu, W. A. Stripe, I. Carmichael, A. S. Serianni, J. Am. Chem. Soc. 1997, 119, 1737–1744.

- [22] A. De Mesmaeker, J. Lebreton, P. Hoffmann, S. M. Freier, Synlett 1993, 677–679.
- [23] A. L. Allan, P. L. Gladstone, M. L. P. Price, S. A. Hopkins, J. C. Juarez, F. Donate, R. J. Ternansky, D. E. Shaw, B. Ganem, Y. Li, W. Wang, S. Ealick, J. Med. Chem. 2006, 49, 7807–7815.
- [24] H. An, T. Wang, M. A. Maier, M. Manoharan, B. S. Ross, P. Dan Cook, J. Org. Chem. 2001, 66, 2789–2801.
- [25] V. Vanheusden, R. Busson, P. Herdewijn, S. Van Calenbergh, J. Org. Chem. 2004, 69, 4446–4453.
- [26] M. Minato, K. Yamamoto, J. Tsuji, J. Org. Chem. 1990, 55, 766–768.
- [27] M. J. Robins, F. Hansske, J. S. Wilson, S. D. Hawrelak, D. Madej, in: *Nucleosides, Nucleotides, and Their Biological Applications* (Eds.: J. L. Rideout, D. W. Henry, L. M. Beacham III), Academic Press, **1983**, pp. 279–295.
- [28] P. Auffinger, E. Westhof, J. Mol. Biol. 1997, 274, 54-63.
- [29] C. Schneider, J. Sühnel, Biopolymers 1999, 50, 287-302.
- [30] I. Velikyan, S. Acharya, A. Trifonova, A. Földesi, J. Chattopadhyaya, J. Am. Chem. Soc. 2001, 123, 2893–2894.

- [31] A. Lo, E. Shefter, T. G. Cochran, J. Pharm. Sci. 1975, 64, 1707– 1710.
- [32] A. B. Eldrup, C. R. Allerson, C. F. Bennett, S. Bera, B. Bhat, N. Bhat, M. R. Bosserman, J. Brooks, C. Burlein, S. S. Carroll, P. D. Cook, K. L. Getty, M. MacCoss, D. R. McMasters, D. B. Olsen, T. P. Prakash, M. Prhavc, Q. Song, J. E. Tomassini, J. Xia, J. Med. Chem. 2004, 47, 2283–2295.
- [33] T. Cihlar, A. S. Ray, C. G. Boojamra, L. Zhang, H. Hui, G. Laflamme, J. E. Vela, D. Grant, J. Chen, F. Myrick, K. L. White, Y. Gao, K.-Y. Lin, J. L. Douglas, N. T. Parkin, A. Carey, R. Pakdaman, R. L. Mackman, *Antimicrob. Agents Chemother.* 2008, *52*, 655–665.
- [34] P. Silhár, M. Hocek, R. Pohl, I. Votruba, I. H. Shih, E. Mabery, R. Mackman, *Bioorg. Med. Chem.* 2008, 16, 2329–2366.
- [35] J. L. Douglas, M. L. Panis, E. Ho, K.-Y. Lin, S. H. Krawczyk, D. M. Grant, R. Cai, S. Swaminathan, X. Chen, T. Cihlar, *Antimicrob. Agents Chemother.* 2005, 49, 2460–2466.

Received: October 25, 2010 Published Online: January 5, 2011