Tetrahedron Vol 46, No 7, pp 2263-2272, 1990 Printed in Great Britain

CHLOROPALLADATION OF 1-ARYL-@-METHYLENEBICYCLO[n.1.0]ALKANES^{1a}

William A. Donaldson*, Jeffrey T. North, James A. Gruetzmacher, Michael Finley,^{1b} and Daniel J. Stepuszek

Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA

(Received in USA 4 August 1989)

SUMMARY: The chloropalladation of 1-ary1-0-methylenebicyclo[n.1.0]alkanes affords a mixture of (1-ary1-3-chloro-2-methylenecycloalky1) - and (3-ary1-3-chloro-2-methylenecycloalky1)palladium chloride dimers in excellent yield. These products have been characterized by 'H NMR spectro-scopy. The regioselectivity of the chloropalladation appears to be dependent on ring strain, steric hinderance and to some extent, the ability of the aryl substituent to stabilize partial positive charge.

The reactivity of strained organic molecules with transition metals is of considerable theoretical and synthetic interest. In particular, the catalytic and stoichiometric organometallic chemistry of methylenecyclopropanes has provided a wealth of novel transformations.² Simple η^2 -coordination has been observed for 1:1 complexes with iron, rhodium, iridium and platinum.³ In addition, ring opened complexes of iron,⁴ molybdenum,⁵ platinum⁶ and palladium^{7,8} have been reported. Ring opening may occur via cleavage of the C1-C2 bond to furnish η^4 -1,3dienes⁴ or via C2-C3 bond cleavage to generate η^4 -trimethylenemethane complexes.^{4,5} Hydrometallation,⁶ carbometallation⁷ and halometallation⁸ of methylenecyclopropanes can proceed via C1-C2 cleavage to yield 3-butenyl or π -allyl complexes or via C2-C3 cleavage to afford π -allyl complexes (Scheme 1).

Scheme 1.

An example of this latter reaction is the chloropalladation of alkyl- and aryl-substituted methylenecyclopropanes (1) which affords π -allyl complexes 2a and b.⁸ As part of our program in the application of complexes 2 to organic synthesis,^{9,10} we have examined the chloropalladation of a series of 1-aryl- ω -methylenebicyclo[n.1.0]alkanes (3).¹¹

RESULTS¹²

The reaction of 7-methylene-1-phenylbicyclo[4.1.0]heptane (3a) with $PdCl_2(CH_3CN)_2$ (4) in CH_2Cl_2 gave (3-chloro-2-methylene-1-phenylcycloheptyl)palladium chloride dimer (5a) and isomeric (3-chloro-2-methylene-3-phenylcycloheptyl)palladium chloride dimer (6a) (2:3 ratio, 96%). The isomer 6a could be separated by fractional crystallization. Heating a mixture of 5a and 6a in CH_3CN at reflux (24h) resulted in conversion of 6a into 5a with excellent mass recovery (98%).

The structure of 5a was assigned by comparison of its NMR spectral data (Table I) with that of $7^{8a,13}$ whose structure had previously been assigned by x-ray crystallographic analysis of the acetylacetonato derivative.¹⁴ The structure of 6a was also assigned by comparison of its ¹H NMR spectral data (Table II) with 7. Notably, the H₁ protons of 6a and 7 appear at approximately the same chemical shift (~3.8 ppm) with a doublet coupling of ~6 Hz. The configuration at C3 (Ph-eq., Cl.-ax.) is based upon a comparison of the chemical shifts of the H_{syn} and H_{anti} protons; an upfield shift of 1.0 and 0.5 ppm respectively for 6a with respect to 5a. This upfield shift is presumably due to the anisotropic effect of the neighboring phenyl group.

It is clear that chloropalladation of **3a** to afford **5a** and **6a** is under kinetic control. Isomerization of **6a** into the more thermodynamically stable **5a** involves ionization of the axial chloride to afford the cationic trimethylenemethane **8a** (Scheme 2). The cationic trimethylenemethane-Pd(II) system has been predicted by theory, ¹⁵ and experimentally shown¹⁶ to be η^3 rather than η^4 , with facile migration about the four carbons of the ligand. Capture of the cationic trimethylenemethylenemethane isomer **9a** by chloride attack generates the more stable product **5a**.

Scheme 2.

The reaction of 3a with 4 in methanol (23°C) affords 5a, 6a, and 10 (2:3:1 ratio, 94%). Heating this mixture in methanol (65°C, 24h) affords 5a and 10 (1:2 ratio, 98%). Pure (3methoxy-2-methylene-3-phenylcycloheptyl)palladium chloride dimer (10) could be isolated by repeated extraction of the more soluble 5a with CH_2Cl_2 . The structure of 10 was assigned by comparison of its spectral data (experimental section) with that obtained for 6a. Notably, stirring the mixture of 5a and 6a (2:3 ratio obtained from chloropalladation of 3a in CH_2Cl_2) in methanol (23°C, 24h) gave only the same ratio of 5a and 6a.

TABLE I. ¹H NMR Data for (1-Aryl-3-chloro-2-methylenecycloalkyl)palladium complexes^a

5

compd	H _{syn}	H _{anti}	н _з	Other
5 a	3.93 (s)	3.02 (s)	4.87 (dd) [2.4, 5.8]	7.8-7.1 (m; 5H); 2.6-1.2 (m, 8H)
5b	4.44 (s)	2.98 (s)	5.23 (dd) [4.4, 10.4]	7.4-7.1 (br s, 5H); 2.5-1.0 (m, 10H)
5c	4.10 (s)	3.21 (s)	5.34 (d) [6.0]	7.4-7.1 (m, 5H); 2.8-0.8 (m, 8H)
5d	3.96 (s)	3.10 (s)	4.90 (dd) [2.4, 5.6]	7.3-6.9 (m, 4H); 2.26(s, 3H, CH ₃); 2.1-1.0 (m, 8H)
5e	3.80 (s)	2.86 (s)	4.88 (dd) [2.6, 5.2]	8.4-8.1, 7.3-6.8 (m, 4H); 2.31 (s, 3H, CH ₃); 2.5-1.0 (m, 8H)
5£	3.95 (s)	3.13 (s)	4.90 (dd) [2.5, 6.0]	7.38 (m, 2H); 6.79 (m, 2H); 3.77 (s, 3H, OCH ₃); 2.6-0.8 (m, 8H)
5g	3.99 (s)	3.13 (s)	4.92 (dd) [2.6, 5.6]	7.5-6.6 (m, 4H); 3.80 (s, 3H, OCH ₃); 3.0-0.7 (m, 8H)
5h	b	2.90 (s)	4.92 (br m)	7.7 (m, 1H); 6.6 (m, 1H); 2.4-1.4 (m); 3.88, 3.84, 3.82 (3 s, 9H)
5 <i>1</i>	3.97 (s)	3.07 (s)	4.90 (dd) [2.0, 6.0]	7.3-6.7 (br m, 4H); 2.6-0.5 (m, 8H)
5j	4.02 (s)	3.06 (s)	4.92 (dd) [2.6-5.6]	8.2-8.0, 7.8-7.4 (m, 4H); 2.3-1.0 (m, 8H)

^aIn ppm downfield from SiMe₄ (multiplicity: s = singlet, br = broad, d = doublet, dd = doublet of doublets, m = multiplet; integration)[coupling in Hz]; CDCl₃ solution. ^bObscured by methoxy signals.

The reaction of 8-methylene-1-phenylbicyclo[5.1.0]octane (3b) with 4 in CH_2Cl_2 gave 5b and 6b (5:4 ratio, 94%). Heating a sample of the mixture in CH_3CN at reflux (24h) resulted in conversion of 6b into 5b with quantitative mass recovery.

The structure of **5b** was assigned by comparison of its ¹H NMR spectral data (Table I) with 11.¹³ The H_{syn} and H_{anti} signals of **5b** are shifted downfield from those of **11** by approximately the same magnitude that the H_{syn} and H_{anti} signals of **5a** are shifted downfield from those of **7** (0.2 and 0.3 ppm respectively). The structure of **6b** was assigned by comparison of its ¹H NMR spectral data (Table II) with that of **11**. The H_{syn} and H_{anti} signals of **6b** are shifted upfield from those of **11** by approximately the same magnitude as are the H_{syn} and H_{anti} signals of **6b** shifted upfield from those of **7** (0.8 and 0.3 ppm respectively).

		H	H _{anti} 6	H ₁ H _{mit} 13
compd	H _{syn}	Hanti	н ₁	Other
6a	2.92 (s)	2.52 (s)	3.75 (d) [5.6]	8.0-7.2 (m; 5H); 2.5-1.0 (m, 8H)
6Ь	3.29 (s)	2.75 (s)	4.08 (dd) [4.4, 9.5]	7.4~7.1 (br s, 5H); 5.98 (t, 1H)[8.3]; 2.5~1.0 (m, 10H)
6C	4.06 (s)	3.07 (s)	4.38 (s)	7.4-7.1 (m, 5H); 2.8-0.8 (m, 8H)
6d	2.95 (s)	2.33 (s)	3.73 (d) [6.6]	7.3~6.9 (m, 4H); 2.26(s, 3H, CH ₃); 2.1~1.0 (m, BH)
13d	3.47 (a)	2.80 (s)	4.23 (t)	7.76, 7.12 (AA'BB', 4H); 2.32 (s, 3H, CH ₃); 2.3-1.2 (m, 8H)
6e	3.12 (a)	2.55 (s)	3.95 (d) [5.2]	8.4-8.1, 7.3-6.8 (m, 4H); 2.34 (s, 3H, CH ₃); 2.5-1.0 (m, 8H)
13£	3.49 (s)	2.81 (s)	4.23 (t) [8.5]	7.75, 6.85 (AA'BB', 4H) $[J_{AB} = 8.8]$ 6.22 (t, J = 6.6); 3.78 (s, 3H, OCH ₃); 2.5-1.2 (m, 8H)
6g	3.21 (s)	2.63 (8)	4.16 (br m)	7.4-6.9 (m); 6.06 (t, 1H)[7]; 3.88 (s, 3H, OCH ₃); 2.4-1.5 (m, 8H)
6h	3.25 (s)	2.64 (3)	4.09 (br m)	7.7 (m, 1H); 6.6 (m, 1H); 2.4–1.4 (m); 3.86, 3.84 (2 s, 9H)
13 <u>i</u>	3.40 (s)	2.79 (a)	4.23 (t) [7.2]	7.6 (m); 7.0 (m); 6.23 (t, 1H)[7]; 2.4-1.5 (m, 8H)
6j	2.82 (s)	2.51 (s)	3,77 (d) [5.8]	8.2, 7.7-7.3 (m, 4H); 2.5-1.4 (m, 8H)

TABLE II. ¹H NMR Data for (3-Aryl-3-chloro-2-methylenecycloalkyl)palladium complexes^a

^aIn ppm downfield from SiMe, (multiplicity: s = singlet, br = broad, d = doublet, dd = doublet of doublets, m = multiplet; integration) [coupling in Hz]; CDC1, solution.

The reaction of exo-3-methylene-2-phenyltricyclo[3.2.1.0^{2,4}]octane (3c) with 4 in CH₂Cl₂ gave 5c and 6c (1:2 ratio, 95%). The structures of 5c and 6c were assigned by comparison of their ¹H NMR spectral data (Tables I and II) with that of $12.^{13}$

The reaction of 1-(4'-methylphenyl)-7-methylenebicyclo[4.1.0]heptane (3d) with 4 in CH₂Cl₂ gave 5d, 6d and 13d (1.3:1:1 ratio, 74%). Heating a sample of the mixture in CH₃CN at reflux (21h) gave exclusively 5d with quantitative mass recovery. The structure of 5d was assigned by comparison of its NMR spectral data (Table I) with that of 5a. The structure of 6d was assigned by comparison of its ¹H NMR spectral data (Table II) with that of 6a. The structure of diastereomer 13d was assigned by comparison of its ¹H NMR spectral data (Table II) with that of 6a. The structure of diastereomer 13d was assigned by comparison of its ¹H NMR spectral data (Table II) with that of 6a and 7. In particular, while the H_{syn} and H_{anti} signals of 6d are significantly shifted upfield with

respect to 5d due to the anisotropy of the phenyl substituent, the H_{syn} and H_{anti} of 13d are not shifted as far upfield.

In a similar fashion, the chloropalladation of 3e-j gave the π -allyl complexes 5e-j, 6e-j, and 13f, i (Scheme 3) whose structural assignments are based upon comparison of their ¹H NMR spectral data (Tables I and II) with that of 5a, 6a, and 13d.

DISCUSSION

It has been proposed that the chloropalladation of 1 proceeds via i) initial coordination of PdCl₂ to the less hindered face of the methylenecyclopropane, followed by ii) disrotatory ring opening of the C2-C3 bond¹⁷ and iii) suprafacial transfer of the chloride ligand to either C2 or C3.^{8a} Extended Huckel calculations indicate that the Pd-metal slips away from the central carbon (ie. η^2 --> η^1) prior to/or during chloride transfer.^{8a} It should be noted that slippage to η^1 would create a cyclopropyl carbocation species which would open in an allowed disrotatory fashion. However the intermediacy of a discrete zwitterionic η^1 -trimethylenemethane species

such as 14 was ruled out on the basis of the stereospecific, suprafacial chloride ligand transfer as well as by the failure to trap such an intermediate in a nucleophilic solvent. The exact timing of disrotatory ring opening and chloride transfer is not known, however it may depend upon "geometrical constraints imposed by substituents on the methylenecyclopropane ring."^{8a}

The structure of products 5 and 6 reflect apparent trans addition of Pd-Cl across the cyclopropane ring of compounds 3. However in order to be consistent with the mechanism for the chloropalladation of cis- and trans-9-methylenebicyclo(6.1.0]nonane, ^{8a} it is believed that the products which arise via dis-in-cis-addition (5' and 13) undergo a rapid η^3 -> η^1 -> η^3 isomerization and/or ring inversion to afford the structure with the most stable configuration/conformation. ^{8a,13} Evidence to support the cis-addition mechanism comes from the chloropalladation of 3c. The products 5c and 6c are both assigned the Cl-endo configuration. This indicates that Cl is delivered to the less hindered face of the methylenecyclopropane ring. This is the face which should coordinate to PdCl, in the initial step of the mechanism (vide supra).

- PdCl₂L

14

For the (1-ary1-3-chloro-2-methylenecycloheptyl)palladium chloride dimers (5a, d-j) the most stable structure has the C3 chloride cubstituent in an axial position; trans to the Pd atom. The 3-chloro-2-methylene-1-phenylcyclooctyl)palladium chloride dimer (5b) has the same configuration at C3, however the cyclooctyl ring adopts a conformer similar to that of 11. A rationale for the stability of the different conformers for the 7- and 8-membered rings has previously been presented.¹³ For the (3-ary1-3-chloro-2-methylenecycloalkyl)palladium complexes the situation is considerably more complex, and an unequivocal rationale for the differential stability of the η^3 -> η^1 - η^3 isomers 6 and 13 is not possible. For example, it has been shown that for geminally substituted phenylcyclohexanes, the energy difference between the phenyl equatorial and phenyl axial conformers depends upon the presence of substituents α to the phenyl, as well as substituents present on the aryl ring.¹⁸

The chloropalladation of **3a** in methanol (23°C) affords **5a**, **6a**, and a methoxy substituted product (10). It should be noted that the methanolysis of **6a** to afford **10** requires more vigorous

reaction conditions (65°C). Therefore it is clear that the product 10 formed from 3a must arise from a competitive addition of palladium and methanol across the cyclopropane bond in a cis fashion, followed by a rapid $\eta^3 -> \eta^1 -> \eta^3$ isomerization, or by nucleophilic attack of methanol on an π -organopalladium species in a trans fashion. The unambiguous studies of the stereochemistry of alkoxypalladation have shown only trans attack.¹⁹ The regiospecific addition of methanol to the phenyl substituted cyclopropane carbon of 3a strongly implies an intermediate involving some carbocation character.

The present results indicate that there is a slight kinetic preference for chloride transfer to the phenyl substituted cyclopropane carbon (6a) as opposed to transfer to the unsubstituted cyclopropane carbon (5a). This selectivity is in marked contrast to the lack of selectivity observed for chloropalladation of 2-phenyl- and 2,2-diphenylmethylenecyclopropane.^{8b} The preference for chloride transfer to the phenyl substituted carbon of 3 appears to be dependent on ring strain; for the less strained 3b nearly equal amounts of products 5b and 6bare obtained, while for the more highly strained 3c there is an increased preference for Cl transfer to the phenyl substituted carbon (ie. 6c vs. 5c). This dependence upon ring strain should reflect the relative timing of the ring opening and of Cl transfer. For the less strained system, ring opening and Cl transfer occur with comparable rates, however, for the more strained structures, ring opening is more rapid than the transfer of Cl, and thus greater buildup of partial positive charge occurs for the more strained ring systems. The results for the chloropalladation of 1-aryl-7-methylenebicyclo[4.1.0]heptanes bearing a *para*-substituent (ie. 3d, 3f, 3i) are consistent with the slight development of partial positive charge.

Perhaps more dramatic is the effect of steric hindrance on the regioselectivity of chloride transfer. Chloropalladation of compounds bearing an ortho substituent (ie. 3e, 3g) gave predominantly the product resulting from attack of chloride at the unsubstituted cyclopropane carbon (5e, 5g). Interestingly, chloropalladation of 3h, a compound which bears both an ortho substituent as well as an electron donating para substituent, affords the product from chloride transfer to the unsubstituted carbon (5h) as the major product (1.6:1 ratio). Thus steric hindrance has a greater influence on the regioselectivity than does electronic effects.

In summary, the chloropalladation of $1-ary1-\omega$ -methylenebicyclo[n.1.0]alkanes proceeds via cleavage of the C2-C3 cyclopropane bond to afford aryl substituted (3-chloro-2-methylenecyclo-alkyl)palladium chloride dimers in good to excellent yields. The regioselectivity for chloride transfer appears to depend upon ring strain and steric hindrance, and to a lesser extent upon the ability of the aryl substituent to stabilize partial positive charge. The application of complexes 5 and 6 to organic synthesis is the subject of the following paper.

EXPERIMENTAL

General Data. All IR spectra were recorded on a Perkin Elmer 700 spectrometer and were calibrated against the 1601 cm⁻¹ peak of polystyrene. All 60 MHz ¹H NMR and 15 MHz ¹³C(¹H) NMR spectra were recorded on a Varian EM360L or a JEOL FX60Q spectrometer; chemical shifts are reported in ppm downfield of TMS and couplings are reported in hertz. All 300 MHz ¹H NMR spectra were recorded on a GE QE-300 spectrometer. Melting points were obtained using a Mel-Temp melting point apparatus and are uncorrected. Microanalyses were sent to Midwest Microlab, LTD., Indianapolis, IN.

All organometallic reactions were run under an atmosphere of nitrogen. Spectrograde solvents were used without further purification except for diethyl ether which was distilled

from sodium benzophenone ketyl. Preparative thin layer chromatography plates (20 x 20 cm) were prepared from a slurry of silica gel (GF-254, type 60, 30g) in water (70 mL) and were dried (125°C) for 24h prior to use.

<u>Arvlcycloalkenes</u> were prepared from the appropriate aryl bromide, via Grignard formation and condensation with the appropriate cycloalkanone. The resultant crude cycloalkanols were dehydrated by treatment with a catalytic amount of crystalline iodine, or pTsOH in refluxing benzene with azeotropic removal of water. The arylcycloalkenes are all known compounds.²⁰

<u>1-Aryl-@-methylenebicyclo[n.1.0]alkanes</u> were prepared from the corresponding arylcycloalkene by addition of chloromethylcarbene (Cl₂HCCH₃, nBuLi, -10°C) followed by dehydrohalogenation (tBuOK, DMSO, 90°C) according to the method of Arora and Binger.²¹ Prepared in this manner were: 7methylene-1-phenylbicyclo[4.1.0]heptane (3z, 65%, bp 39-40°C/0.025 mm Hg); 8-methylene-1phenylbicyclo[5.1.0]octane (3b, 31%, bp 71-79°C/0.24 mm Hg); exo-3-methylene-2-phenyltricyclo-[3.2.1.0^{2,4}]octane (3c, 11%, bp 75-77°C/0.55 mm Hg); 1-(4'-methylphenyl)-7-methylenebicyclo-[4.1.0]heptane (3d, 26%, bp 75°C/0.18 mm Hg); 1-(2'-methylphenyl)-7-methylenebicyclo[4.1.0]heptane (3e, 15%, bp 85°C/0.20 mm Hg); 1-(2'-methylphenyl)-7-methylenebicyclo[4.1.0]heptane (3f, 7%, bp 81°C/0.80 mm Hg); 1-(2'-methoxyphenyl)-7-methylenebicyclo[4.1.0]heptane (3g, 9%, mp 34-35°C); 1-(2',3',4'-trimethoxyphenyl)-7-methylenebicyclo[4.1.0]heptane (3b, 53%, mp 37-38°); 1-(4'-fluorophenyl)-7-methylenebicyclo[4.1.0]heptane (3j, 2%, bp 45°C/0.07 mm Hg); 1-(3'-trifluoromethylphenyl)-7-methylenebicyclo[4.1.0]heptane (3j, 2%, bp 70°C/0.23 mm Hg). Pertinent spectral data for compounds 3a-j appear in Table III.

comp	d H _{Aryl}	^H methylene	^H alkyl	Other
3a	7.4-7.1 (br s, 5H)	5.50 (m; 2H)	2.2-1.2 (m; 9H)	-
.3Ь	7.4-7.0 (br s; 5H)	5.41 (br s; 1H) 5.30 (br s; 1H)	2.5-1.2 (m; 11H)	-
3с	7.2-7.0 (s; 5H)	5.22 (m; 2H)	2.0-1.0 (m; 7H)	2.75 (br s; bridgehead H) 2.16 (br s; bridgehead H)
3d	7.3-6.8 (AA'BB')	5.45 (br s; 2H)	2.1-1.2 (m; 9H)	2.27 (s; 3H; CH ₃)
3e	7.2-6.8 (m; 4H)	5.57 (br s; 1H) 5.35 (br s; 1H)	2.0-1.0 (m; 9H)	2.36 (s; 3H; CH ₃)
3f	7.3-6.6 (AA'BB', J _{AB} =9)	5.39 (m; 2H)	2.2-1.1 (m; 9H)	3.63 (s; 3H; OCH ₃)
3 g	7.4-6.6 (complex m; 4H)	5.65 (br s; 1H) 5.45 (br s; 1H)	2.1-1.2 (m; 9H)	3.81 (s; 3H; OCH,)
3h ^b	6.50, 6.35 (_{J_{AB}=8, 2н)}	5.54 (br s; 1H) 5.36 (br s; 1H)	2.2-0.7	3.88 (s; 3H, OCH ₃) 3.72 (s; 6H, OCH ₃)
31	7.4-6.7 (complex m; 4H)	5.50 (m; 2H)	2.2-1.1 (m; 9H)	-
dر 3	7.6-7.4 (m; 4H)	5.53 (m; 2H)	2.3-0.8 (m; 9H)	-

TABLE III. ¹H NMR Data for 1-Aryl-@-methylenebicyclo[n.1.0]alkanes^A

³In ppm downfield from internal SiMe₄ (multiplicity: s = singlet, br s = broad singlet, m = multiplet; integration); CDCl₃ solution unless otherwise noted. ^D CCl₄.

General Procedure for Chloropalladation of 1-Aryl- ω -methylenebicyclo[n.1.0]alkanes. To a solution of PdCl₂(CH₃CN)₂ (~0.25 mmol) in CH₂Cl₂ (30 mL) was added, in one portion, a solution of the 1-aryl- ω -methylenebicyclo[n.1.0]alkane (1 molar equiv.) in CH₂Cl₂ (8 mL). The red-orange solution rapidly turned pale yellow, and the solution was stirred for 1h. The solvent was evaporated and the product dried under high vacuum. Pertinent ¹H NMR data for the products appear in Tables I and II. The following 1-aryl- ω -methylenebicyclo[n.1.0]alkanes were treated in the above fashion:

<u>Chloropalladation of</u> **3a**. The product was identified by NMR spectroscopy (Tables I and II) as consisting of **5a** and **6a** (2:3 ratio, 96%). Fractional crystallization of the mixture $(CH_2Cl_2/hexanes)$ afforded pure **6a** as a pale yellow solid: mp 158°C dec. Anal. Calcd for $[C_{14}H_{16}Cl_2Pd]_2$: C, 46.50; H, 4.46. Found C, 46.22; H, 4.52. A sample of the mixture (0.50 g)

was heated at reflux in CH₃CN (100 mL) for 24h. Removal of the solvent in vacuo gave a golden yellow solid, identified as exclusively **5a** by ¹H NMR spectroscopy (0.49 g, 98%): mp 185°C dec. ¹³C(¹H) NMR (CDCl₃) δ 142.9, 128.9, 128.3, 127.3, 121.3, 98.6, 64.2, 63.4, 40.2, 37.7, 26.9, 25.0; Anal. Calcd for [C₁₄H₁₆Cl₂Pd]₂: C, 46.50; H, 4.46. Found C, 46.23; H, 4.57.

Chloropalladation of **3a** in methanol. To a solution/suspension of **4** (0.21 g, 0.81 mmol) in methanol (15 mL) was added **3a** (0.15 g, 0.81 mmol). The red-orange solution immediately began to pale. The reaction mixture was stirred for 1h, and then the solvent was removed under reduced pressure and dried in vacuo to afford a yellow powder (0.27 g, 94%). The product was identified by ¹H NMR spectroscopy as a mixture of **5a**, **6a**, and **10** (2:3:1). The sample was taken up in methanol (25 mL) and heated at a gentle reflux for 24h. The reaction mixture was cooled and the solvent removed under reduced pressure to afford a pale yellow powder. NMR spectroscopy indicated that this consisted of **5a** and **I0** (1:2 ratio, 98%). A pure sample of **10** could be obtained as an off-white powder by repeated extraction from the mixture of the more soluble **5a** with CH₂Cl₂. **10**: mp 190°C dec.; ¹H NMR (CDCl₃) & 8.0-7.1 (m, ArH, 5H), 3.81 (d, J = 5.6, 1H), 3.28 (s, 3H), 3.02 (s, 1H), 2.62 (s, 1H), 2.5-1.0 (m, 8H); ¹³C(¹H) NMR (CDCl₃) & 142.4, 129.3, 128.2, 127.4, 126.9, 84.5, 82.6, 63.2, 52.2, 30.4, 29.8, 27.8, 24.1; Anal. Calcd for [C₁₅H₁₉OPdCl₁₂: C, 50.44; H, 5.36. Found: C, 48.86; H, 5.36.

<u>Chloropalladation of</u> 3b. The product was identified by NMR spectroscopy (Tables I and II) as consisting of 5b and 6b (5:4 ratio, 94%). A sample of the mixture (0.10 g) was heated at reflux in CH₃CN (30 mL) for 24h. Removal of the solvent *in vacuo* gave a golden yellow solid, identified as exclusively 5b by ¹H NMR spectroscopy (0.10 g, 100%): mp 130-135°C; Anal. Calcd for $[C_{15}H_{18}Cl_2Pd]_2$: C, 47.95; H, 4.83. Found C, 46.63; H, 4.96.

<u>Chloropalladation of</u> 3c. The product was identified by NMR spectroscopy (Tables I and II) as consisting of 5c and 6c (1:2 ratio, 95%). The isomeric products were separated by preparative TLC with benzene-hexanes elution (3:1). 5c: Rf = 0.72, mp 139°C dec. Anal. Calcd for $[C_{15}H_{16}Cl_2Pd]_2$: C, 48.22; H, 4.31. Found C, 48.64; H, 4.63. 6c: Rf = 0.36, mp 177°C dec. A sample of the mixture was heated at reflux in CH₃CN (30 mL) for 24h. Removal of the solvent in vacuo gave a golden yellow solid, identified as exclusively 5c by ¹H NMR spectroscopy.

Chloropalladation of 3d. The crude product was passed through a short bed of silica with CH₂Cl₂ elution. The product was identified by NMR spectroscopy (Tables I and II) as consisting of 5d, 6d and 13d (1.3:1:1 ratio, 74%). Isomer 13d could be isolated by preparative TLC with benzene elution (Rf = 0.45). A sample of the mixture (0.11 g) was heated at reflux in CH₃CN (30 mL) for 24h. Removal of the solvent in vacuo gave a golden yellow solid, 5d; mp 136°C dec.; ${}^{13}C({}^{11}H)$ NMR (CDCl₃) δ 140.0, 137.2, 129.1, 128.9, 121.3, 64.1, 63.5, 40.3, 37.8, 26.9, 25.2, 21.3; Anal. Calcd for [C₁₅H₁₈Cl₂Pd]₂: C, 47.95; H, 4.83. Found C, 48.17; H, 4.87.

<u>Chloropalladation of</u> **3e.** The crude product was passed through a short bed of silica with CH_2Cl_2 elution. The product thus obtained was identified by NMR spectroscopy (Tables I and II) as consisting of **5e** and **6e** (2:1 ratio, 69%). A sample of the mixture (0.13 g) was heated at reflux in CH_3CN (30 mL) for 24h. Removal of the solvent *in vacuo* gave a golden yellow solid, identified as exclusively **5e** by ¹H NMR spectroscopy (0.12 g, 92%). An analytical sample was recrystallized from benzene: mp 145°C dec.; ¹³C(¹H) NMR (CDCl₃) δ 142.5, 134.8, 130.8, 127.0, 126.4, 125.7, 121.5, 63.9, 62.3, 39.8, 38.2, 26.8, 24.2, 21.1; Anal. Calcd for $[C_{15}H_{18}Cl_2Pd]_2 \cdot C_6H_6$: C, 52.14; H, 5.10. Found C, 51.94; H, 5.46.

Chloropalladation of 3f. The product was identified by NMR spectroscopy (Tables I and II) as consisting of 5f and 6f (1:2.2 ratio, 95%). The isomeric products were separated by preparative TLC with benzene elution. 6f: Rf = 0.51, mp 137°C dec. Anal. Calcd for $[C_{15}H_{16}OCl_2Pd]_2 \cdot \frac{1}{2}C_6H_6$: C, 47.49; H, 4.73. Found C, 47.39; H, 4.51. A sample of the mixture (0.10 g) was heated at reflux in CH₃CN (30 mL) for 24h. Removal of the solvent in vacuo gave a golden yellow solid, identified as 5f by ¹H NMR spectroscopy (0.10 g, 100%): mp 140°C dec.

<u>Chloropalladation of</u> **3g**. The product was identified by NMR spectroscopy (Tables I and II) as consisting of **5g** and **6g** (3.5:1 ratio, 98%). The isomer **5g** could be isolated by preparative TLC with benzene elution (Rf = 0.71). **5g**: mp 144°C dec. Anal. Calcd for $[C_{15}H_{18}OCl_2Pd]_2$: C, 46.02; H, 4.64. Found C, 46.47; H, 4.72.

<u>Chloropalladation of</u> **3b.** The product was identified by NMR spectroscopy (Tables I and II) as consisting of **5b** and **6b** (1.6:1 ratio, 93%): mp 98°C dec. Anal. Calcd for $[C_{17}H_{22}O_3Cl_2Pd]_2$: C, 45.21; H, 4.91. Found C, 46.20; H, 4.91.

<u>Chloropalladation of</u> **31.** The crude product was passed through a short bed of silica with CH_2Cl_2 elution. The product thus obtained was identified by NMR spectroscopy (Tables I and II) as consisting of **51** and **61** (2.4:1 ratio, 64%). A sample of the mixture (0.14 g) was heated at

reflux in CH₃CN (50 mL) for 24h with no change in composition. The regioisomers could be separated by preparative TLC with benzene-hexanes-ethyl acetate (10:7:3) as eluent. 5i: Rf = 0.83; mp 170°C dec.; ${}^{13}C({}^{1}H)$ NMR (CDCl₃) & 162.2 ($J_{CF} = 245.0$), 138.8, 130.6 ($J_{CF} = 8.5$), 115.4 ($J_{CF} = 22.0$), 121.7, 64.4, 63.4, 40.1, 37.7, 27.0, 24.9; 6i: Rf = 0.74.

<u>Chloropalladation of</u> 3j. The product was identified by NMR spectroscopy (Tables I and II) as consisting of 5j and 6j (1:2.3 ratio, 96%). A sample of the mixture (0.12 g) was heated at reflux in CH₃CN (30 mL) for 24h. Removal of the solvent in vacuo gave a golden yellow solid, identified as 5j by ¹H NMR spectroscopy (0.11 g, 92%): mp 165-170°C dec.; $^{13}C(^{1}H)$ NMR (CDCl₃) δ 143.7, 132.8, 132.3, 129.0, 125.3, 124.4, 121.7, 96.5, 64.8, 63.3, 40.1, 37.6, 27.2, 24.8; Anal. Calcd for $[C_{13}H_{13}F_{3}Cl_{2}Pd]_{2}$: C, 41.94; H, 3.52. Found C, 42.95; H, 3.69.

<u>ACKNOWLEDGMENTS</u>. The authors wish to thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and Marquette University for financial support. Acknowledgment is due to Johnson-Matthey for generous donations of palladium chloride through the precious metals loan program.

REFERENCES AND NOTES

- a) Presented, in part, by JTN at the ACS Undergraduate Research Symposium, 189th National ACS Meeting, Miami Beach, FL, April 28-May 3, 1985, Division of Chemical Education, Paper No. 43; b) ACS-PRF summer Undergraduate Research Fellow, 1984.
- 2) Binger, P.; Buch, H.M. Top. Curr. Chem., 1987, 135, 77-151.
- Green, M.; Howard, J.A.K.; Hughes, R.P.; Kellett, S.C. J. Chem. Soc., Dalton Trans., 1975, 2007-14.
- Pinhas, A.R.; Samuelson, A.G.; Risemberg, R.; Arnold, E.V.; Clardy, J.; Carpenter, B.K. J. Am. Chem. Soc., 1981, <u>103</u>, 1668-75; Whitesides, T.H.; Slaven, R.W. J. Organometal. Chem., 1974, <u>67</u>, 99-108; Noyori, R.; Nishimura, T.; Takaya, H. J. Chem. Soc. (D), 1969, 89.
- 5) Allen, S.R.; Barnes, S.G.; Green, M.; Moran, G.; Trollope, L.; Murrall, N.W.; Welch, A.J.; Sharaiha, D.M. J. Chem. Soc., Dalton Trans., 1984, 1157-69.
- 6) Phillips, R.L.; Puddephatt, R.J. J. Chem. Soc., Dalton Trans., 1978, 1736-9.
- 7) Larock, R.C.; Varaprath, S. J. Org. Chem., 1984, <u>49</u>, 3432-5; Balme, G.; Fournet, G.; Gore, J. Tetrahedron Lett., 1986, 3855-8; Donaldson, W.A.; Brodt, C.A. J. Organometal. Chem., 1987, <u>330</u>, C33-C36; Fournet, G.; Balme, G.; Gore, J. Tetrahedron, 1988, <u>44</u>, 5809-20.
- 8) a) Albright, T.A.; Clemens, P.R.; Hughes, R.P.; Hunton, D.E.; Margerum, L.D. J. Am. Chem. Soc., 1982, <u>104</u>, 5369-79; b) Dallas, B.K.; Hughes, R.P.; Schumann, K. Ibid., 1982, <u>104</u>, 5380-3; c) Clemens, P.R.; Hughes, R.P.; Margerum, L.D. J. Am. Chem. Soc., 1981, <u>103</u>, 2428-30; d) Hughes, R.P.; Hunton, D.E.; Schumann, K. J. Organometal. Chem., 1980, <u>184</u>, C67-C69.; e) Dallas, B.K.; Hughes, R.P. Ibid., 1980, <u>184</u>, C67-C69; f) Noyori, R.; Takaya, H. J. Chem. Soc., Chem. Comm., 1969, 77.
- 9) Donaldson, W.A.; Grief, V.J. Tetrahedron Lett., 1986, 2345-8; Donaldson, W.A.; Wang, J.; Cepa, V.G.; Suson, J.D. J. Org. Chem., accepted for publication.
- 10) Donaldson, W.A.; Stepuszek, D.J.; Gruetzmacher, J.A. Tetrahedron, following paper in this issue.
- A preliminary account of some of this work has appeared: Donaldson, W.A. J. Organometal. Chem., 1984, <u>269</u>, C25-C28.
- 12) All compounds described in this paper are racemic mixtures of enantiomers. For simplicity only one enantiomer is diagrammed.
- 13) Donaldson, W.A. Organometallics, 1986, 5, 223-30.
- 14) Hughes, R.P.; Day, C.S. Organometallics, 1982, 1, 1221-5.
- 15) Albright, T.A. J. Organometal. Chem., 1980, 198, 159-68.
- 16) Lukas, J.; Kramer, P.A. J. Organometal. Chem., 1971, <u>31</u>, 111-8.
- 17) In the bicyclo[4.1.0]heptane ring system, the disrotatory opening occurs in a dis-in fashion due to geometrical constraints.
- 18) Hodgson, D.J.; Rychlewska, U.; Eliel, E.L.; Manoharan, M.; Knox, D.E.; Olefirowicz, E.M. J. Org. Chem., 1985, <u>50</u>, 4838-43; Eliel, E.L.; Manoharan, M.; Levine, S.G.; Ng, A. Ibid., 1985, <u>50</u>, 4978-80.
- 19) Stille, J.K.; Morgan, R.A. J. Am. Chem. Soc., 1966, <u>88</u>, 5135-41; Wiger, G.; Albelo, G.; Rettig, M.F. J. Chem. Soc., Dalton, Trans., 1974, 2242-7; Hall, S.S.; Akermark, B. Organometallics, 1984, <u>3</u>, 1745-8; The "cis-methoxypalladation" of dehydro-δ-pinene has been reported, however the product which reflects apparent cis-addition might arise via trans-addition followed by η³->η¹->η³ isomerization: Hosokawa, T.; Imada, Y.; Murahashi, S.-I. Tetrahedron Lett., 1982, 3373-4.
- 20) Core, S.K.; Lotspeich, F.J. J. Med. Chem., 1969, <u>12</u>, 334-6; Balsamo. A.; Battistini, C.; Crotti, P.; Macchia, B.; Macchia, F. Gazz. Chim. Ital., 1976, <u>106</u>, 77-83; Ginsburg, D.; Pappo, R. J. Am. Chem. Soc., 1953, <u>75</u>, 1094-7; Kleinfelter, D.C.; Dye, T.E.; Mallory, J.E.; Trent, E.S. J. Org. Chem., 1967, <u>32</u>, 1743-41.
- 21) Arora, S.; Binger, P. Synthesis, 1977, 682-3.