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Lewis Acid Promoted Rearrangements of 1,3-Dioxolanyl-Substituted 1,2-
Oxazines into Novel Products with 1,3,6-Trioxa-7-azacyclopenta[cd]indene 
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Abstract: Lewis acid promoted rearrangements of 4-methoxy- and
4-benzyloxy-substituted 1,2-oxazines syn-1b and syn-1c furnished
novel tricyclic products 5 and 6. A mechanistic rationale is suggest-
ed for the different rearrangement pathways depending on the con-
figuration and the nature of the 4-alkoxy groups of the precursor
1,2-oxazines. Short period hydrogenolyses of these rearrangement
products afforded tetrahydrofuranyl-annulated 5,6-dihydro-4H-1,2-
oxazines 10 and 11, whereas longer reduction times led to formation
of tetrahydrofuran derivatives 14, 15 and 16, 17 in good yields.

Key words: heterocycles, 1,2-oxazines, furans, Lewis acids, rear-
rangements, 1,2-alkyl shifts, hydrogenations

We recently reported that enantiopure 4-(2-trimethylsi-
lyl)ethoxy-substituted 1,2-oxazines such as anti-1a or
syn-1a smoothly undergo Lewis acid promoted rearrange-
ments providing bicyclic ketones 2 or 4 (Scheme 1 and
Scheme 2).1 These bicyclic 1,2-oxazine derivatives are
versatile precursors for the synthesis of highly substituted
tetrahydropyrans which can be regarded as carbohydrate
mimetics. We now present the results of experiments in-
volving related 1,2-oxazines with other 4-alkoxy substitu-
ents, which led to different types of rearrangement
products.

Scheme 1 Lewis acid promoted rearrangement of 1,2-oxazines
anti-1a and anti-1b leading to bi- or tricyclic 1,2-oxazine derivatives
2 and 3.

1,2-Oxazines anti-1 and syn-1 are easily available in a ste-
reodivergent manner by reaction of lithiated alkoxyal-
lenes with a D-glyceraldehyde-derived nitrone.2 When 4-
methoxy-substituted 1,2-oxazine anti-1b was exposed to
tin tetrachloride the tricyclic acetal 3 was obtained in 50%
yield rather than the expected product 2 (Scheme 1).
Compound 3 can be regarded as an internally protected
derivative of bicyclic 1,2-oxazin-4-one 2. Constitution
and configuration of 3 were proven by X-ray crystallo-
graphic analysis.3

The Lewis acid induced reaction of 4-methoxy-substitut-
ed 1,2-oxazine syn-1b followed a different, even more
surprising pathway giving the novel product 5 with three
annulated heterocycles (hexahydro-2H,4H-1,3,6-trioxa-
7-azacyclopenta[cd]indene derivative) in good yield
(Scheme 2).4 This transformation was also performed
with 4-benzyloxy-substituted precursor syn-1c which fur-
nished the analogous tricyclic product 6 in 55% yield.

Scheme 2 Lewis acid promoted rearrangements of 1,2-oxazines
syn-1a, syn-1b, and syn-1c leading to bicyclic product 4 and novel tri-
cyclic compounds 5 or 6.

The formation of the tricyclic products 3, 5 and 6 can be
rationalized by the following mechanisms. Coordination
of the Lewis acid to the ‘outer’ dioxolane oxygen of syn-
1 or anti-1, subsequent ring opening of the ketal and in-
tramolecular attack of the resulting stabilized carbenium
ion onto the enol ether moiety of the 1,2-oxazine ring lead
to stabilized carbenium ions 7 and 8 as crucial intermedi-
ates (Scheme 3). Depending on the nature of the 4-alkoxy
group different pathways are possible. With 4-(2-trimeth-
ylsilyl)ethoxy substitution the bicyclic products 2 and 4
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are formed, as this group allows for fast fragmentation of
7 or 8 into the carbonyl compound, ethylene and a Me3SiX
species.1 On the other hand, the methoxy group is not
capable of undergoing a similarly fast fragmentation and
therefore alternative steps have to follow. In the case of
carbenium ion 8 derived from anti-1b a direct cyclization
under expulsion of the Lewis acid is geometrically possi-
ble and hence the observed tricyclic product 3 is formed.
This pathway is not accessible in the syn-series for steric
reasons. Instead, intermediate 7 suffers a 1,2-shift of an
alkyl group5 with retention of configuration resulting in
new carbenium ion 9 which is now stabilized by the nitro-
gen rather than the oxygen atom. The significantly higher
stability of the iminium-ion-type intermediate and possi-
bly a steric relaxation are the driving forces for the rear-
rangement. Carbenium ion 9 is now able to smoothly react
with the remaining oxygen under displacement of the
Lewis acid, delivering compound 5 with a methoxy group
at the central carbon atom of the tricyclic skeleton. The
formation of compound 6 also follows this pathway, dem-
onstrating that the 4-benzyloxy group does not undergo
fragmentation into a benzyl cation at the stage of interme-
diate 7.6

In order to prove the structure of rearrangement products
5 and 6 and to demonstrate their synthetic potential subse-

quent reactions were conducted. Depending on the time of
a hydrogenolysis it is possible to induce debenzylation
and N–O bond cleavage of 2-N-benzyl-protected 1,2-ox-
azines.7 Hydrogenolysis of tricycles 5 and 6 first led to de-
benzylation at the nitrogen with subsequent ring opening
of the N,O-acetal moiety affording novel 1,2-oxazines 10
and 11 with annulated furan rings in moderate to good
yields (Scheme 4). Acetylation of 10 provided the corre-
sponding 1,2-oxazine 18 which afforded suitable crystals
for an X-ray crystallographic analysis.3 This allowed not
only unambiguous proof of the constitution and configu-
ration of 18, but also that of the structure of its precursor
5 thus supporting our mechanistic rationale as illustrated
in Scheme 3.

Hydrogenolysis of 5 for a longer period in the presence of
Boc-anhydride led to a 7:1 mixture of two constitutional
isomers, the N-protected N,O-acetals 14 and 15 in good
yield (Scheme 4). A similar result was obtained with tri-
cyclic precursor 6, however, now the O-benzyl group was
also removed, which provided the two isomers 16 and 17
(ratio: 9:1) in moderate yield. Under these reaction condi-
tions intermediate formation of 10 and 11 is followed by
the cleavage of the N–O bonds to furnish dihydroxy-
imines 12 and 13, respectively. These intermediates cy-
clize and, depending on which of the two primary
hydroxyl groups is adding to the imine, either bicyclic iso-
mers 14, 16 or 15, 17 are formed. The intermediates are

Scheme 3 Proposed reaction pathways for the rearrangements 
leading to compounds 2, 4, 3, 5, and 6.
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then in situ protected to generate the NHBoc moiety. In
the case of 4-benzyloxy-substituted 1,2-oxazine 6 the ben-
zyl group was also reductively removed giving com-
pounds 16, 17 with a free tertiary hydroxyl group.

In summary, a novel stereoselective Lewis acid promoted
rearrangement of 1,3-dioxolanyl-substituted 1,2-oxazines
was discovered, which led to enantiopure heterocyclic
compounds with a complex skeleton. The resulting tricy-
clic products 5 and 6 are suitable precursors for further
transformations as demonstrated by their reductive trans-
formations into compounds such as 10, 11 and 14–17.
Easily accessible intermediates such as 5,6-dihydro-4H-
1,2-oxazines 10 and 11 should  be excellent starting mate-
rials for addition reactions to the C=N double bond, thus
leading to new enantiopure heterocycles. All these options
will enhance the synthetic utility of 1,2-oxazines, which
has already been demonstrated in several reports.8
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