Peroxide als Pflanzeninhaltsstoffe, 12. Mitt.¹⁾:

Peroxide vom Davanon-Typ aus der Eberraute (Artemisia abrotanum) und ihre Darstellung

Gerhard Rücker, Detlef Manns und Sibylle Wilbert²⁾

Pharmazeutisches Institut der Rheinischen Friedrich-Wilhelms-Universität, Kreuzbergweg 26, D-53115 Bonn, Germany.

Eingegangen am 17. Juli 1992

Aus den oberirdischen Teilen der Eberraute (Artemisia abrotanum L., Asteraceae) wurden neben (+)-Davanon (1) und Arteinculton (3) die bekannten Peroxyhalbketale 2, 5 und 7 isoliert. Als neue Peroxide vom Davanon-Typ konnten Epi-Arteinculton (4) und Spiro-Arteinculton (6) durch de Vergleich in der Pflanze nachgewiesen werden. Bei der Singulett-Sauerstoff-Oxidation von 1 werden 2, 3, 4, 5 und 7 gebildet, bei der Triplett-Sauerstoff-Oxidation 2, 3, 5, 6, 7 und Hydroxy-Davanon.

Peroxides as Plant Constituents, XII: Davanone Type Peroxides from Artemisia abrotanum and Their Preparation

From the aerial parts of Artemisia abrotanum L. (Asteraceae), besides (+)-Davanone (1) and Arteincultone (2), the known peroxy-semiketals 2, 5, and 7 were isolated. In addition, the previously unknown davanone type peroxides epi-arteincultone (4) and spiro-arteincultone (6) were identified in A. abrotanum by TLC. By means of singlet oxygen oxidation of 1, compounds 2, 3, 4, 5, and 7 are formed, by triplet oxygen oxydation compounds 2, 3, 5, 6, 7 as well as hydroxy-davanone.

Wie bereits berichtet³⁾ haben wir aus *Artemisia maritima* L. ssp. *maritima* (Asteraceae) die Peroxide vom Davanon-Typ 3 (Arteinculton)^{3,4)} und 2³⁾ isoliert, die *in vitro* eine schizontocide Wirkung besitzen⁵⁾. In der gleichen Pflanze kommt auch das 5*R*-Diastereomer 5 des Halbketals 2 vor⁶⁾.

2, 3 und 5 ließen sich neben (+)-Davanon (1)⁷⁾ und dem chromatographisch nicht trennbaren Gemisch der diastereomeren sechsgliedrigen Peroxy-Halbketale 7⁸⁾ auch aus den frischen oberirdischen Teilen der Eberraute (*Artemisia abrotanum* L., Asteraceae) isolieren²⁾. Zusätzlich wurden in dieser Pflanze zwei bisher nicht bekannte Peroxide, Epi-Arteinculton (4) und Spiro-Arteinculton (6) detektiert, die erst nach photochemischer Darstellung aus 1 durch de Vergleich identifiziert werden konnten. Das Gemisch der

sechsgliedrigen Peroxyhalbketale 7 wurde auch aus einer Handelsdroge (Herba Abrotani conc.) isoliert²⁾.

Zur Darstellung der Peroxide vom Davanon-Typ 2 bis 7 wurde 6S,7S,10R-2,6,10-Oxy-dodeca-2,11-dien-5-on ((+)-Davanon 1)⁷⁾, welches in *A. abrotanum* vorkommt^{2,9)} und biologische Vorstufe der Peroxide 2 bis 7 sein sollte, einer Singulett-Sauerstoff-($^{1}O_{2}$)- und Triplett-Sauerstoff-($^{3}O_{2}$)-Oxidation unterworfen. Die Trennung der Produkte erfolgte durch Niederdruck-Chromatographie (Lobar^R, Merck) in Sammelfraktionen, die sc weiter getrennt wurden. 4 konnte nur unter Schwierigkeiten von 3 getrennt werden. Bei der $^{1}O_{2}$ -Oxidation, die unter *in situ* Reduktion zu den entspr. Alkoholen schon früher durchgeführt wurde¹⁰⁾, bilden sich

458 Rücker, Manns und Wilbert

2, 3, 4, 5 und 7, aber nicht Verbindung 6. Das neben 3 zu erwartende zweite Produkt [1a] einer EN-Reaktion mit $^{1}O_{2}$ konnte nicht isoliert werden; offensichtlich liegt das Gleichgewicht weitgehend auf der Seite der beiden diastereomeren Peroxyhalbketale 2 und 5.

Wie erwähnt⁶⁾, ist 5 das gegenüber 2 epimere Peroxyhalbketal. Da für 2 bereits die S-Konfiguration des Ketal-C abgeleitet wurde³⁾, ergibt sich in Einklang mit den spektroskopischen Daten für 5 die 5R-Konfiguration. Für 5 werden die spektroskopischen Daten erstmalig mitgeteilt (Tab. 1). Das ¹H-NMR- und das ¹³C-NMR-Spektrum von 4 (Tab. 1) lassen auf die gleiche Konstitution wie 3 schließen, dessen Stereochemie bekannt ist⁸⁾. Im ¹H-NMR-Spektrum tritt jedoch gegenüber 3 eine Tieffeldverschiebung der Methylgruppe 14-H ($\Delta \delta = 0.13$ ppm) auf. Geringe Hochfeldverschiebungen findet man für die Signale 1-H und 4-H. Außerdem treten Änderungen der Kopplungskonstanten an 6-H und 7-H auf (3: $J_{6,7} = 8.5$ Hz; $J_{6,14} = 7$ Hz; $J_{7,8} = 8.5$ Hz; $J_{7,8'} = 6$ Hz.- 4: Tab. 1). Dabei geht das Aufspaltungsmuster des Protons 6-H von einem Doppelquartett in $3^{2,8}$) in ein Quintett in 4 über. Offensichtlich sind J_{6.7} und J_{6.14} gleich groß (Tab. 1). Aus diesen Änderungen kann auf eine Epimerisierung an 6-C geschlossen werden, die wegen des aciden 6-H durch "Phototautomerie" eingetreten sein könnte. Für 4 wird daher die Beibehaltung der Konfiguration an 7-C und 10-C und eine Konfigurationsumkehr an 6-C angenommen und die Struktur des Epi-Arteincultons vorgeschlagen. Ein Vergleich mit den vier Stereoisomeren von 1 stützt diesen Vorschlag¹²). NOE-Messungen konnten wegen Substanzmangel nicht vorgenommen werden. Eine Epimerisierung von 3 zu 4 mit Alkali gelang nicht.

Bei der ³O₂-Oxidation von 1 bilden sich neben dem in der Lit. ⁷⁾ beschriebenen Hydroxy-Davanon ⁷⁾ die Peroxide 2, 3, 5 und 7 sowie zusätzlich neben weiteren nicht identifizierten Produkten das bisher nicht bekannte Peroxid 6. 4 konnte nicht detektiert werden. Das Diastereomeren-Gemisch 7 liegt hier in höherer Ausbeute vor als bei der ¹O₂-Oxidation. Offensichtlich ist die notwendige *trans/cis*-Isomerisierung der Doppelbindung von 1 (bzw. 3) unter diesen Bedingungen wahrscheinlicher.

Das Peroxid 6 bildet nadelförmige Kristalle, Schmp. 94-96°C. Aus den für Peroxide charakteristischen Signalen des MS (M-32; M-33) ergibt sich die Summenformel C₁₅H₂₄O₆ mit zwei Sauerstoff-Atomen mehr als 3. Wegen des Fehlens einer Carbonyl-Gruppe (IR) sind im ¹H-NMR-Spektrum (Tab. 2) die Signale von 3-H und 4-H hochfeldverschoben;

Tab. 1: NMR-Daten von 4 (300 MHz) und 5 (250/100 MHz) in CDCl₃

н .	4 δ [ppm] (H)	<u>5</u> δ [ppm] (H)	<u>5</u> C	δ [ppm]	
1	1.39 s (3)+	5.09 bs (1) 4.99 m (1)	1	115.2	
2			2	140.5	
3	6.87 (1)	4.64 dd (1)	3	84.9	
4	6.34 d (1)	2.80 dd (2) 2.50 dd	4		
5			5	109.5	
6	2.99 quint (1)	2.06 m (1)	6	43.0	
7	4.16 ddd (1)	4.08 ddd (1)	7	81.6	
8	2.06 - 1.54 (4)	2.06-1.60m(4)	8	31.0	
9			9	37.5	
10			10	84.1	
11	5.90 dd (1)	5.86 dd (1)	11	143.6	
12	4.97 dd (1) 5.17 dd (1)	4.97 dd (1) 5.18 dd (1)	12	112.4	
13	1.395 s (3)+	1.83 dd (3)	13	18.5	
14	1.22 d (3)	1.01 d (3)	14	13.6	
15	1.29 s (3)	1.33 s (3)	15	26.3	
ООН	[7.76 s (1) ⁺⁺	OH 6.51 s (1)	++		

+Zuordnung austauschbar. ++Lage konzentrationsabhängig, nach D₂O-Austausch nicht mehr vorhanden. Kopplungskonstanten [Hz]: $\underline{4}$: $J_{1,3}=1.5$; $J_{1,3}=1.5$; $J_{3,4}=7.5$; $J_{3,4}=9$; $J_{4,4}=12.5$; $J_{6,7}=7.0$; $J_{6,14}=7.0$; $J_{7,8}=7.5$; $J_{7,8}=6$; $J_{11,12}=10.5$; $J_{11,12}=17$; $J_{12,12}=1.5$. $\underline{5}$: $J_{3,4}=16$; $J_{6,7}=7$; $J_{6,14}=7$; $J_{7,8}=8$; $J_{7,8}=6$; $J_{11,12}=11$; $J_{11,12}=17.5$; $J_{12,12}=2$.

Tab. 2: NMR-Daten von 6 (300/75 Hz) in CDCl₃

н	8 [ppm]	(H)	С	δ [ppm]	APT
1	1.35+	s (3)	1	24.15+	сн ₃
2	-	-	2	81.87	С
3	6.25	d (1)	3	139.35	СН
4	5.57	dd (1)++	4	125.12	СН
5	-	_	5	104.70	С
6	2.64	q (1)	6	54.26	СН
7	-	-	7	114.71	C
8	2.15 /1.83	- (4)	8	30.80	CH ₂
9	. 2.15 /1.63	m (4)	9	36.28	CH ₂
10	-	-	10	86.05	C
11	6.00	dd (1)	11	142.62	СН
12	4.97	dd (1)	12		
12'	5.32	dd (1)	12	112.77	CH ₂
13	1.36+	s (3)	13	24.39+	CH ₃
14	1.06	d (3)	14	7.92	сн ₃
15	1.33+	s (3)	15	25.92+	CH ₃
он	4.68+++	d (1)			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OOF	7.57 ⁺⁺⁺	s (1)			~
					~~~~~~~~~~~~~~~~~~

+Zuordnung austauschbar. ++hach  $D_2$ O-Austausch d. +++Lage konzentrationsabhängig nach  $D_2$ O-Austausch nicht mehr vorhanden. Kopplungskonstanten [Hz]:  $J_{3,4}=16;\ J_{4,5-\mathrm{OH}}=1.5;\ J_{6,14}=7;\ J_{11,12}=10.5;\ J_{11,12}:=17;\ J_{12,12}:=1.$ 

außerdem fehlt ein Signal für 7-H. Bei  $\delta$  = 4.68 ppm tritt eine OH-Gruppe in Resonanz (D₂O-Austausch), die an C-5 gebunden sein sollte (Vereinfachung von 4-H zum Dublett nach D₂O-Austausch). Im ¹³C-NMR-Spektrum (Tab. 2) zeigt 5-C gegenüber  $3^{2,3}$ ) eine Hochfeld-Verschiebung. Insgesamt führen die spektroskopischen Daten zur Struktur eines von C-5 ausgehenden Spiro-Peroxyhalbketals, welches durch ³O₂-Oxidation des Ether-Kohlenstoffs C-7 in 3 und Ketalisierung mit C-5 entstanden sein sollte.

**6** zeigt *in vitro* eine schizontocide Wirkung (EC 1 μg/ml) gegen *Plasmodium falciparum*⁵).

Wir danken der Fa. Dragoco, Holzminden, für die Überlassung von Davana-Öl.

### **Experimenteller Teil**

Schmp. (unkorr.): Gallenkamp.-  $[\alpha]_D$ : Polarimeter 241 (Perkin-Elmer).- IR: Spektrometer 298 (Perkin-Elmer).- NMR: Varian XL 300  1 H: 300 MHz,  13 C: 75 MHz.- MS: Kratos MS 50; Einlassystem Hot-Box, Quellentemp. 180°C; 70 eV.- Belichtungsapparatur: 13/210 (DEMA, Hans Mangels, Bornheim); Na-Hochdrucklampe G/92/2 SON/T/250 W (Philips, Belgien).- DC: Fertigplatten (Merck), Kieselgel 60, F-254, 0.25 mm.- Lobar Chromatographie (Merck): Duramat-Pumpe.- MPLC: Kieselgel 60, Säulen B 685 (Büchi).- SC: Kieselgel 60.

Pflanzenmaterial, Extraktion und Isolierung

Anbau von A. abrotanum bei der Fa. Schwabe (Karlsruhe) und im Garten des Instituts für Pharmazeutische Biologie, Bonn.- 1500 g frische Blätter wurden in 8 l Petrolether (PAe) mit dem Ultra-Turrax zerkleinert und nach Zusatz von 8 l Et₂O 12 h mazeriert, filtriert und eingedampft. Ausb. 15 g (1% bezogen auf das Pflanzenmaterial). Der Extrakt wurde mittels MPLC durch Gradientenelution in 8 Peroxid-haltige Fraktionen aufgetrennt (PAe-Ethylacetat 20%, PAe-Ethylacetat 30%, Ethylacetat): Fraktionen F1-F8.

#### (+)-Davanon (1)

a) Die Fraktion F1 (DC: Rf 0.68-0.91, n-Hexan/Ethylacetat 3+1) wurde in 100 ml Aceton suspendiert, filtriert und das eingedampfte Filtrat an einer Säule Lobar^R B (Merck) getrennt. Fraktionen mit Rf 0.24 (n-Hexan/Ethylacetat 9+1) im DC gaben nach Eindampfen ein blaßgelbes Öl.

b) Aus 12.8 g Davana-Öl durch mehrfache SC (PAe/Ethylacetat 20+1 und n-Hexan/Ethylacetat 5+1)²⁾. Ausb. 1 g (10% bezogen auf Davana-Öl). Die physikalischen und spektroskopischen Daten entsprechen Lit.¹²⁾.

#### Arteinculton (3)

- a) Durch mehrfache MPLC-Trennung (n-Hexan/Ethylacetat 6+1) der Fraktion F2 (DC: Rf 0.39-0.68, n-Hexan/Ethylacetat 3+1) und Reinigung an Lobar^R B-Säulen (Merck) (Isopropylchlorid/Aceton 95+5).
- b) Durch Umsetzung von 1 mit Singulett- bzw. Triplett-Sauerstoff: Farblose, ölige Substanz, Rf 0.29 (n-Hexan/Ethylacetat 3+1).-  $[\alpha]^{20}_D = +60.5^{\circ}$  (c = 1.08, CHCl₃). Die spektroskopischen Daten entsprechen Lit.^{3,4}).

460 Rücker, Manns und Wilbert

3R,5S,6S,7S,10R-2,6,10-Trimethyl-3,5-dioxy-7,10-epoxydodeca-1,11-dien-5-ol (2)

- a) wie 3, Methode a. Rf 0.43.
- b) wie 3. Methode b.

Die spektroskopischen Daten entsprechen Lit.3).

3R,5R,6S,7S,10R-2,6,10-Trimethyl-3,5-dioxy-7,10-epoxydodeca-1,11-dien-5-ol (5)⁶⁾

- a) wie 3, Methode a. Rf 0.46.
- **b**) wie **3**, Methode **b**. Farbloses Öl.- IR (CCl₄): 3430 (OH); 3080 (=CH); 2970-2850; 1450; 1370 (CH); 1120 (COC); 910 (=CH).-  1 H-NMR: Tab. 1.-  1 3C-NMR: Tab. 1.- MS: m/z (%) = 256 (M*-32) (18), 111 (100), 93 (38), 81 (9), 69 (29), 55 (10), 43 (10).-  $C_{15}H_{24}O_2$  (268.2), Ber. M-32: 236.1776 Gef. 236.1765.

5R*,6S,7S,10R-2,6,10-Trimethyl-2,5-epidioxy-7,10-epoxydodeca-3,11-dien-5-ol (7)

- a) wie 3. Methode a.
- b) wie 3, Methode b.

Farbloses Öl, Rf 0.30 und 0.20 (Isopropylchlorid/Aceton 95+5). Die spektroskopischen Daten entsprechen Lit.⁸).

Umsetzung von 1 mit Singulett-Sauerstoff

1.178 g **1** wurden in 500 ml  $CH_2Cl_2$  nach Zugabe von 50 mg Bengalrosa (als methanolische Lösung) unter Kühlung auf ca. -2°C und Sauerstoff-Begasung mit Na-Licht bestrahlt. Verdampfendes  $CH_2Cl_2$  wurde ersetzt. Nach 130 min konnten dc **2** bis **7** detektiert werden. Das Reaktionsgemisch wurde an einer Lobar^R-Säule (Merck) (n-Hexan/Ethylacetat 4+1) getrennt (Sammelfraktionen S1-S5). Die weitere Reinigung erfolgte sc. Ausb.: **2**: 280 mg (22%); **3**: 347 mg (29%); **4**: 3 mg (0.3%). **5**: 283 mg (24%); **7**: 94 mg (8%).

Umsetzung von 1 mit Triplett-Sauerstoff

594 mg 1 wurden bei 55°C 78 h mit einem schwachen Luftstrom begast. Aufarbeitung analog Singulett-Sauerstoff-Oxidation. Ausb.: **2** + **5**: 161 mg (27%); **3**: 160 mg (27%); **6**: 3.5 mg (0.6%); **7**: 143 mg (24%); Hydroxy-Davanon⁷).

6R,7S,10R-2,6,10-Epoxydodeca-3,11-dien-2-hydroperoxid (Epi-Arteinculton) (4)

a) Durch Umsetzung von 1 mit  $^{1}O_{2}$  und mehrfache sc Trennung der Sammelfraktion S4 (26.8 mg), (Chloroform/Aceton 20+1 und n-

Hexan/Ethylacetat 3+1). Ausb. 3 mg (0.3%) einer öligen Substanz (DC: Rf 0.27, n-Hexan/Ethylacetat 3+1).- IR (Film) identisch mit 3⁴,- ¹H-NMR: Tab. 1

**b)** Dc Nachweis im PAe/Ether-Extrakt der oberirdischen Teile von *A. abrotanum*, Fraktion F4, Rf 0.27 (n-Hexan-Ethylacetat 3+1).

5R*,6S,7S,10R-2,6,10-Trimethyl-5,7-epidioxy-7,10-epoxydodeca-3,11-dien-5-ol (Spiro-Arteinculton) (**6**)

- a) Durch Umsetzung von 1 mit  3O_2  und mehrfache SC (n-Hexan/Ethylacetat 3+1), Ausb. 3.5 mg (0.6%); nadelförmige Kristalle, Schmp. 94-96°C (n-Hexan/Ethylacetat 3+1) (DC: Rf 0.13, n-Hexan/Ethylacetat 3+1).-  $C_{15}H_{24}O_6$  (300.2), Ber. M-32: 268.1674 Gef. 268.1659; Ber. M-33: 267.1596 Gef. 267.1597.- IR (CHCl₃): 3200-3600 (OH); 2870-3000 (CH); 1460; 1370 (CH); 1140 (C-O); 990; 910 (=CH).-  1H -NMR: Tab. 2.-  ${}^{13}C$ -N·MR: Tab. 2.- MS: m/z (%) = 285 (M-15)+ (0.09), 283 (M-17)+ (0.08), 282 (M-18)+ (0.02), 268 (M+-32) (16.1), 267 (M+-33) (87.4), 234 (2.3), 233 (8.2), 129 (40), 125 (75), 112 (38), 111 (23), 109 (36), 81 (72), 69 (63), 67 (52), 55 (40), 43 (100).
  - b) wie 4, Methode b), Fraktion S8, Rf 0.1.

#### Literatur

- Mitt.: G. Rücker, A. Kiefer, J. Breuer, *Planta Medica* 1992, 58, 293-295.
- 2 Aus der Dissertation S. Wilbert, Universität Bonn, 1991.
- G. Rücker, E. Breitmaier, R. Mayer, D. Manns, Arch. Pharm. (Weinheim) 1987, 320, 437-441.
- 4 S.M. Khafagy, M.A. Al-Yahya, J. Ziesche, F. Bohlmann, *Phytochemistry* 1983, 22, 1821-1822.
- 5 G. Rücker, R.D. Walter, D. Manns, R. Mayer, *Planta Medica* 1991, 57, 295-296.
- G. Rücker, R. Mayer, D. Manns, Arch. Pharm. (Weinheim) 1987, 320, 952.
- 7 H. Jork, M. Nachtrab, Arch. Pharm. (Weinheim) 1979, 312, 923-932.
- 8 G. Appendino, P. Gariboldi, G.M. Nano, P. Tetenyi, *Phytochemistry* **1984**, *23*, 2545-2551.
- M. Hurabielle, M. Bastard-Malsot, M. Paris, *Planta Medica* 1982, 45, 55-56.
- 10 A.F. Thomas, R. Dubini, Helv. Chim. Acta 1974, 57, 2076-2081.
- H.G.O. Becker, Einführung in die Photochemie, 2. Aufl. S. 388, Thieme-Verlag, Stuttgart, 1983.
- 12 A.F. Thomas, W. Thommen, B. Willhalm, E.W. Hagaman, E. Wenkert, Helv. Chim. Acta 1974, 57, 2055-2061.

[Ph77]