

Tetrahedron Letters 41 (2000) 1039-1042

TETRAHEDRON LETTERS

Amino acid fluoride for glycopeptide synthesis[†]

Yukishige Ito,* Manfred Gerz and Yoshiaki Nakahara [‡]

RIKEN (The Institute of Physical and Chemical Research) and CREST, Japan Science and Technology Corporation (JST), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

Received 2 September 1999; revised 4 November 1999; accepted 26 November 1999

Abstract

The formation of *N*-glycosidic linkage between *N*-acetylglucosamine (GlcNAc) and asparagine (Asn) was effected using aspartic acid γ -fluoride in combination with either glycosyl azide or silyl carbamate, by the action of Lindlar catalyst or Bu₄NF. Further elongation of peptide chain was performed to give pentapeptide. This method was further applied into the synthesis of trisaccharidic asparagine, using *p*-methoxybenzyl assisted stereoselective β -mannosylation as the key transformation. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: azides; carbamates; fluorides; glycopeptides.

Amino acid fluorides are powerful and rapid reacting acylating species, which have proved effective both in solution phase and solid phase peptide synthesis.¹ Excellent reactivity of amino acid fluoride is well underscored in the synthesis of peptibols, which contain multiple numbers of sterically demanding aminoisobutylic acid residues.² The use of amino acid fluorides, especially in the field of glycopeptide synthesis,³ seems promising, because strong activation of the carboxyl component is likely to be required in order to incorporate sterically demanding carbohydrate carrying components. We report here the first demonstration of the utility of acid fluorides for the formation of *N*-linked carbohydrate containing peptides.

Common to all types of *N*-linked glycoproteins is the presence of β -configurated *N*-glycosidic linkage between asparagine (Asn) and *N*-acetylglucosamine (GlcNAc) residues. Here, by using aspartic acid γ -fluoride in combination with either glycosyl azide or silyl carbamate as latent glycosyl amine (Scheme 1) the formation of this particular type of linkage was effected.

GlcNAc derived azide 1^4 was reacted with properly protected fluorides $2\mathbf{a}-\mathbf{c}$,⁵ in the presence of Lindlar catalyst and Me₃SiOMe (to trap HF) under H₂ (Method A). After chromatographic purification, corresponding glyco-amino acid products $3\mathbf{a}-\mathbf{c}$ were isolated in 88–93% yield (Table 1). This procedure is compatible with Fmoc/*t*-Bu, Cbz/Bn, and Boc/*t*-Bu protected aspartic acid fluorides (entries 1–3). Besides Lindlar catalyst, 10% Pd–C deactivated by ethylenediamine [Pd(ene)]⁶ was also effective for this transformation (entry 4).

^{*} Corresponding author. Tel: +81-48-467-9430; fax: +81-48-462-4680; e-mail: yukito@postman.riken.go.jp (Y. Ito)

[†] Dedicated to Prof. Pierre Sinaÿ, on the occasion of his 62nd birthday.

[‡] Alternative address: Department of Industrial Chemistry, Tokai University, Hiratsuka-shi, 259-1292, Japan

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. *P11:* S0040-4039(99)02228-5

Scheme 1. Synthesis of *N*-glycosylated asparagine. (1) Lindlar cat., Me₃SiOMe, H₂/THF or *i*-PrOH; (2) Lindlar cat., H₂, (Boc)₂O/EtOH, rt, 20 h, 87%; (3) (*i*-Pr)₃SiOTf (1.5 equiv.), DBMP (1.7 equiv.)/CH₂Cl₂, rt, 40 min, 100%; (4) Bu₄NF (0.2 equiv.)/CH₂Cl₂

 Table 1

 Synthesis of glyco-amino acid 3 from 1 (Method A) or 5 (Method B) ^aBased on 1. ^bPd(ene) was used in place of Lindlar catalyst. ^cCalculated based on 5.

entry	2 (equiv.)	Method	solv.	time (h)	yield (%)
1	a (1.5)	Α	THF	18	90 <i>a</i>
2	b (1.5)	Α	<i>i</i> -PrOH	19	93 <i>a</i>
3	c (1.3)	Α	THF	18	88^a
4	c (1.3)	Α	THF	18	92 <i>a</i> , <i>b</i>
5	a (1.2)	В	CH_2Cl_2	20	82^c
6	b (1.4)	В	ClCH ₂ CH ₂ Cl	18	87 ^c
7	c (1.2)	В	CH_2Cl_2	40	78^{c}
8	d (1.2)	В	CH ₂ Cl ₂	20	84 ^c

As an alternative precursor of glycosylamine, we envisaged Boc protected **4** assuming that it can be converted to the corresponding silyl carbamate **5** (Method B).⁷ Coupling of the latter with acid fluoride was expected to proceed in the presence of a catalytic amount of Bu₄NF, with continuous regeneration of F^- . GlcNAc azide **1** was first converted to crystalline Boc derivative **4** (H₂, Lindlar cat., Boc₂O/EtOH, 33 h, 87%; m.p. 204–205°C) and then into silyl carbamate **5** under modified Ohfune's conditions⁸ [(*i*-Pr)₃SiOTf, 2,6-di-*t*-butyl-4-methylpyridine (DBMP)/CH₂Cl₂, rt, 2 h, quantitative]. Subsequent reaction with fluorides **2a**–**d** was triggered by Bu₄NF (0.2 equiv.) to give **3a–d** in 78–87% yield (CH₂Cl₂, rt, 20 h, Table 1, entries 5–8).

Further elongation of peptide linkage was attempted as follows (Fig. 1). Free acids **3f** (1.2 equiv.) and **3g** (1.3 equiv.), prepared from **3a** (33%TFA/CH₂Cl₂, rt, 1.5 h) and **3d** (H₂, Pd/C, 1:1 AcOEt–EtOH, rt, 20 h), respectively, were coupled with tripeptide **6b** (prepared from Boc protected **6a** by treatment with 15% TFA/CH₂Cl₂, rt, 20 min), based on Carpino's in situ acid fluoride protocol [tetramethylfluoroform-amidinium hexefluorophosphate (TFFH), (*i*-Pr)₂NEt/CH₂Cl₂, rt, 4 h]⁹ to afford tetrapeptides **7a** and **7b** in 67% and 91% yield, respectively. Compound **7b** was converted to silyl carbamate **7c** [(*i*-Pr)₃SiOTf, DBMP/CH₂Cl₂, rt, 2 h, 95%], which was then reacted with valine fluoride **8** (1.5 equiv.) in the presence of 0.2 equiv. of Bu₄NF in CH₂Cl₂ (rt, 20 h) to afford **9** in 92% yield.

In order to ascertain the extent of epimerization during coupling reactions, enantiomeric fluoride 2e was prepared from Fmoc-D-Asp-O(*t*-Bu) (Novabiochem) and converted to 3e and 7d, in a similar manner as described above. These glycopeptides are diastereomeric to 3a and 7a, with respect to the Asn residue. Stereochemical homogeneity of 3a/3e and 7a/7d was confirmed by 400 MHz ¹H NMR, and it was concluded that the extent of epimerization was negligible.

The applicability of the method to more functionalized systems was further explored using trisaccharide azide **13** synthesized by using *p*-methoxybenzyl-assisted intramolecular aglycon delivery.¹⁰ β -Mannoside containing trisaccharide **12** [¹³C NMR (CDCl₃) δ 99.8, 96.8 and 85.5 (anomeric carbons, ¹*J*_{C-H}=162, 164 and 164 Hz, respectively)] was prepared from mannose donor **10**^{10d} and disaccharide **11** and transformed into **13**. Coupling with fluoride **2a** gave **14** in 70% yield (Scheme 2).

In summary, acid fluorides were successfully used for the synthesis of *N*-glycosylated asparagine containing glycopeptides. Using either azide or silyl carbamate as a latent amino component, amide linkages can be formed under essentially neutral conditions (Lindlar cat. $-Me_3SiOMe$ or cat. Bu_4NF).

1. Typical experimental procedure: Preparation of 3a

Method A: A mixture of compounds **1** (25.1 mg, 0.067 mmol) and **2a** (41.0 mg, 0.103 mmol), Me₃SiOMe (40 µl, 0.29 mmol) and Lindlar catalyst (10 mg) in THF (2 ml) was stirred under H₂ at room temperature for 18 h. The mixture was diluted with CHCl₃:MeOH (10:1, 10 ml), treated with aminopropyl silica gel (Sigma, 1.1 mmol/g, 0.10 g, rt, 0.5 h) and insoluble materials removed by filtration. The filtrate was evaporated in vacuo and the residue was chromatographed over silica gel (CH₂Cl₂:acetone 4:1~1:1) to afford 44.7 mg (90%) of compound **3a**: $\delta_{\rm H}$ (CDCl₃, 400 MHz) 6.09 (d, 1H, *J*=7.9 Hz, NH), 5.95 (d, 1H, *J*=8.4 Hz, NH), 5.2–5.0 (m, 3H), 4.6–4.0 (m, 7H), 3.74 (ddd, 1H, *J*=9.6, 4.0, 2.0 Hz, H–5), 2.85 (dd, 1H, *J*=16.5, 4.5 Hz, CH₂CONH), 2.70 (dd, 1H, *J*=16.5, 4.0 Hz, CH₂CONH), 2.07, 2.05, 2.04 and 1.96 (4s, 3H each, Ac), 1.44 (s, 9H, *t*-Bu); $\delta_{\rm C}$ (CDCl₃, 100 MHz) 172.1, 171.8, 170.9, 170.5, 169.8, 169.1 and 155.9 (CO), 82.2 (C-1), 80.2 (Me₃C), 73.5, 72.9, 67.6, 67.1 (CH₂), 64.5, 61.7 (CH₂), 53.5, 51.0, 47.2, 38.0 (CH₂), 28.0, 23.3, 20.8, 20.7.

Method B: To a solution of compounds 5 (32.9 mg, 0.0625 mmol) and 2a (30 mg, 0.075 mmol) in CH₂Cl₂ (1.5 ml), was added Bu₄NF (0.15 M, 60 μ l, 0.009 mmol) and the mixture stirred at room

Scheme 2. Synthesis of trisaccharidic asparagine. (1) DDQ, MS4A/CH₂Cl₂, rt, 2.5 h; (2) MeOTf, DBMP, MS4A/Cl(CH₂)₂Cl, 40°C, 22 h, 78% over two steps; (3) H₂N(CH₂)₂NH₂/EtOH, reflux, 24 h; (4) Ac₂O/MeOH, rt, 2 h, 75% over two steps; (5) Bu₄NF/THF, rt, 45 min., 91%; (6) **2a** (1.9 equiv.), Me₃SiOMe (4.8 equiv.), Lindlar cat., H₂/THF, rt 26 h, 70%

temperature for 20 h. After processing as described for Method A, 37.7 mg (82%) of compound **3a** was obtained.

Acknowledgements

Financial support from the European Union Science and Technology Fellowship Program (to M.G.) is acknowledged. We thank Dr. Tomoya Ogawa for his encouragement and Ms. Akemi Takahashi for technical assistance.

References

- 1. Carpino, L. A.; Beyermann, M.; Wenschuh, H.; Bienert, M. Acc. Chem. Res. 1996, 29, 268-274.
- 2. Wenschuh, H.; Beyermann, M.; Krause, E.; Brudel, M.; Winter, R.; Schümann, M.; Carpino, L. A.; Bienert, M. J. Org. Chem. 1994, 59, 3275–3280.
- 3. Garg, H. G.; von dem Bruch, K.; Kunz, H. Adv. Carbohydr. Chem. Biochem. 1994, 50, 277-310.
- 4. Szilágyi, L.; Györgydeák, Z. Carbohydr. Res. 1985, 143, 21-41.
- 5. Carpino, L. A.; Mansour, M. E. J. Org. Chem. 1992, 57, 6371-6373.
- 6. Sajiki, H.; Hattori, K.; Hirota, K. J. Org. Chem. 1998, 63, 7990-7992.
- 7. Conversion of free amine into triisopropylsilyl carbamate was reported recently: Lipshutz, B.; Papa, P.; Keith, J. M. J. Org. Chem. 1999, 64, 3792–3793.
- 8. Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870-876.
- 9. Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995, 117, 5401-5402.
- (a) Ito, Y.; Ogawa, T., Angew. Chem. Int. Ed. Engl. 1994, 33, 1765–1767. (b) Dan, A.; Ito, Y.; Ogawa, T., J. Org. Chem. 1995, 60, 4680–4681. (c) Ito, Y.; Ogawa, T. J. Am. Chem. Soc. 1997, 119, 5562–5566. (d) Ito, Y.; Ohnishi, Y.; Ogawa, T.; Nakahara, Y. Synlett 1998, 1102–1104.