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A B S T R A C T

A rapid, efficient, and facile synthesis of an assortment of C-2 substituted imidazopyrazines has been

achieved by utilizing the palladium catalyzed Suzuki cross-coupling of 2-bromo-1H-imidazo[4,5-

b]pyrazine with various boronic acids under microwave irradiation. The utilization of (A-taphos)2PdCl2

as a catalyst in combination with CsF as base and DME-H2O (4:1) as the solvent system at 100 8C
procured the diaryls in acceptable to excellent yields. Prominent features of this developed methodology

include short reaction times, fewer side products, and exceptional tolerance to a wide variety of

functional groups.

� 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
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1. Introduction

The basis of invention of new leads for drug designing programs
is the synthesis of molecules which are novel yet resemble known
biologically active molecules by virtue of the presence of some
critical structural features. Certain small heterocyclic molecules
act as highly functionalized scaffolds and are known pharmaco-
phores of biologically active and medicinally useful molecules.
Hence, the synthesis and investigation of the biological activities of
novel heterocyclic compounds is increasingly important in
medicinal chemistry [1].

The palladium catalyzed Suzuki–Miyaura cross-coupling
reaction between organoboranes and organic halides or pseu-
dohalides has emerged as one of the foremost techniques for the
creation of carbon–carbon bonds. The salient features of these
reactions are the availability, stability, and non-toxicity of a
variety of boronic acids, extensive functional group tolerance and
easy access for product isolation. These features have evidently
47
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extended its scope in synthetic chemistry and hence this reaction
has found widespread use in pharmaceutical industries [2]. Imi-
dazopyrazines belong to an important class of heterocyclic
compounds which display a broad spectrum of pharmacological
activities which include antioxidant, antidiabetic, and anticancer
properties [3]. The diverse applications of imidazopyrazines in
the field of luminescence have been extensively reported in
literature [4]. The microwave assisted organic synthesis (MAOS)
has indisputably become a powerful tool in modern drug
discovery laboratories for the construction of versatile chemical
entities due often to superior reaction rates, selectivity, and
product yields as compared to conventional thermal methodol-
ogies [5].

Prompted by these observations and as a continuation of our
ongoing research program in the synthesis of biologically active
molecules [6], we were interested in synthesizing some C-2
substituted imidazopyrazines which may possess significant
pharmacological activities. On continuation of our research on
palladium catalyzed cross-coupling reactions [7], it has been
planned to apply the Suzuki cross-coupling methodology for the
synthesis of a series of 2-substituted-1H-imidazo[4,5-b]pyrazines.
In this paper, we report a rapid, facile, and efficient methodology
for the synthesis of a series of C-2 substituted imidazopyrazines
under microwave irradiation.
 synthesis of some C-2 substituted imidazopyrazines by utilizing
rowave irradiation, Chin. Chem. Lett. (2015), http://dx.doi.org/
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 Experimental

All solvents and reagents were obtained from commercial
ppliers and used without any further purification. All the
actions were carried out under inert argon atmosphere.
alytical TLC was performed on pre-coated aluminum sheets

 silica (60 F254 nm) and visualized by short-wave UV light at l
4. Melting points were determined on an EZ-Melt automated
elting point apparatus. 1H NMR spectra were recorded at
0 MHz using an internal deuterium lock. Chemical shifts were
easured in d (ppm). 13C NMR spectra were recorded at 100 MHz
ing an internal deuterium lock. LC-MS analyses were performed
ing ESI/APCI, with an ATLANTIS C18 (50 mm � 4.6 mm – 5 mm)
lumn and a flow rate of 1.2 mL/min. Microwave-assisted
nthesis was performed in a single mode Biotage Initiator
icrowave Synthesizer and temperature was monitored using
frared. The microwave reaction was carried out in a 5 mL glass
al and high absorption level was maintained. The conditions
ere maintained till the completion of the reaction.

1. Procedure for the synthesis of intermediate 2

To a solution of 2,3-diamino pyrazine 1, was added CDI in THF,
hich was then heated at 80 8C for 4 h. The reaction completion
as monitored by TLC. The mixture was diluted with water and
tracted in ethyl acetate, dried in anhydrous sodium sulphate,
d distilled under reduced pressure. The crude product was
rified by column chromatography to procure the titled
mpound in 92% yield. MP: 74–76 8C; 1H NMR (400 MHz,

SO-d6): d 6.84 (br, 2H, NH), 8.68 (d, 2H, J = 8.04 Hz, ArH); 13C
R (100 MHz, DMSO-d6): d 135.2, 143.7, 157.5, LC-MS:

lculated 136.1, Observed 137.1.

2. Procedure for the synthesis of intermediate 3

To a solution of intermediate 2 in dichloro ethane was added
Br3 at 0 8C, and the reaction mixture was gradually warmed to
bient temperature. The reaction mass was then heated at 80 8C

r 6 h. The reaction mixture was poured into crushed ice, basified
ith NaHCO3, and extracted with DCM and distilled in reduced
essure to render the titled compound in 76% yield. MP: 83–85 8C;

 NMR (400 MHz, DMSO-d6): d 9.05 (d, 2H, J = 7.76 Hz, ArH); 12.6
r, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 123.9, 138.3, 146.7;
-MS: Calculated 198.0, Observed 199.0.

3. General procedure for the coupling reaction

To a solution of 2-bromo imidazopyrazine intermediate 3
 equiv.) in DME-H2O (4:1), were added boronic acid (1.5 equiv.),
F (3 equiv.), and (A-taphos)2PdCl2 (10 mol%), and the solution
as purged with argon and stirred at room temperature for

 min. The reaction solution was then placed in the microwave
d heated for 20–30 min at 100 8C. When TLC and LC-MS showed
ll consumption of starting materials, the reaction mixture was
tered and diluted with ethyl acetate. The ethyl acetate layer was
tracted, washed in water, washed in brine, dried over
hydrous sodium sulfate, and distilled in vacuum to get the
ude material. The crude product was purified by column
romatography and eluted in varying polarities to obtain the
bstituted diaryls 4a-n.
2-Phenyl-1H-Imidazo[4,5-b]pyrazine (4a): Mp: 85–87 8C; 1H
R (400 MHz, DMSO-d6): d 7.64–7.86 (m, 5H, ArH), 8.94 (s, 2H,

H), 12.32 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 123.9,
9.7, 131.2, 131.7, 133.1, 146.6, 149.8; LC-MS: Calcd. 196.2,
served 197.2; Analysis calcd. for C11H8N4: C, 67.34, H, 4.11, N,
.55, found: C, 67.38, H, 4.08, N, 28.53.
Please cite this article in press as: M.N. Joy, et al., A facile access for th
the palladium catalyzed Suzuki cross-coupling reaction under mi
10.1016/j.cclet.2015.08.015
2-(4-Nitrophenyl)-1H-Imidazo[4,5-b]pyrazine (4b): Mp: 99–
102 8C; 1H NMR (400 MHz, DMSO-d6): d 7.92–7.94 (dd, 2H,
J1 = 1.96 Hz J2 = 8.44 Hz, ArH), 8.46–8.49 (dd, 2H,
J1 = 2.08 Hz, J2 = 8.56 Hz, ArH), 8.72 (d, 2H, J = 7.12 Hz, ArH),
12.73 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 123.1
(2 peaks), 129.6, 138.1, 145.8, 148.9, 149.7; LC-MS: Calcd. 241.2,
Observed 242.2; Analysis calcd. for C11H7N5O2: C, 54.77, H, 2.93, N,
29.03, found: C, 54.82, H, 2.91, N, 29.03.

2-(4-Fluorophenyl)-1H-Imidazo[4,5-b]pyrazine (4c): Mp: 91–
93 8C; 1H NMR (400 MHz, DMSO-d6): d 7.35–7.39 (dd, 2H,
J1 = 2.16 Hz, J2 = 8.04 Hz, ArH), 7.79–7.83 (dd, 2H,
J1 = 1.76 Hz, J2 = 8.24 Hz, ArH), 8.97 (s, 2H, ArH), 12.44 (br, 1H,
NH); 13C NMR (100 MHz, DMSO-d6): d 118.3, 124.0, 129.9, 131.5,
131.7, 146.7, 149.9, 165.1; LC-MS: Calcd. 214.2, Observed 215.2;
Analysis calcd. for C11H7FN4: C, 61.68, H, 3.29, N, 26.16, found: C,
61.72, H, 3.26, N, 26.16.

Methyl 4-(1H-imidazo[4,5-b]pyrazin-2-yl)benzoate (4d): Mp:
106–108 8C; 1H NMR (400 MHz, DMSO-d6): d 3.96 (s, 3H, OCH3),
7.81–7.83 (dd, 2H, J1 = 2.44 Hz, J2 = 8.24 Hz, ArH), 8.26–8.29 (dd,
2H, J1 = 2.64 Hz, J2 = 8.76 Hz, ArH), 8.75 (d, 2H, J = 6.48 Hz, ArH),
12.44 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 53.3, 122.9,
128.8, 132.1 (2 peaks), 136.2, 146.1, 148.8, 167.2; LC-MS: Calcd.
254.2, Observed 255.2; Analysis calcd. for C13H10N4O2: C, 61.41, H,
3.96, N, 22.04, found: C, 61.45, H, 3.95, N, 22.04.

4-(1H-Imidazo[4,5-b]pyrazin-2-yl)benzonitrile (4e): Mp: 96–
98 8C; 1H NMR (400 MHz, DMSO-d6): d 7.73–7.80 (m, 4H, ArH),
8.84 (d, 2H, J = 7.28 Hz, ArH), 12.52 (br, 1H, NH); 13C NMR
(100 MHz, DMSO-d6): d 114.4, 117.1, 122.8, 129.7, 134.1, 136.4,
145.9, 149.2; LC-MS: Calcd. 221.2, Observed 222.2; Analysis calcd.
for C12H7N5: C, 65.15, H, 3.19, N, 31.66, found: C, 65.19, H, 3.16, N,
31.64.

4-(1H-Imidazo[4,5-b]pyrazin-2-yl)phenol (4f): Mp: 90–92 8C;
1H NMR (400 MHz, DMSO-d6): d 5.04 (s, 1H, OH), 7.01–7.04 (dd, 2H,
J1 = 2.36 Hz, J2 = 8.16 Hz, ArH), 7.47–7.49 (dd, 2H,
J1 = 2.28 Hz, J2 = 8.44 Hz, ArH), 8.77 (d, 2H, J = 7.44 Hz, ArH),
12.34 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 118.0
(2 peaks), 122.8 (2 peaks), 124.7, 130.1, 145.8, 149.1, 159.9; LC-MS:
Calcd. 212.2, Observed 213.2; Analysis calcd. for C11H8N4O: C,
62.26, H, 3.80, N, 26.40, found: C, 62.31, H, 3.78, N, 26.38.

2-p-Tolyl-1H-imidazo[4,5-b]pyrazine (4 g): Mp: 88–90 8C; 1H
NMR (400 MHz, DMSO-d6): d 2.67 (s, 3H, CH3), 7.32–7.34 (dd, 2H,
J1 = 2.36 Hz, J2 = 8.28 Hz, ArH), 7.65–7.68 (dd, 2H,
J1 = 1.96 Hz, J2 = 8.36 Hz, ArH), 8.92 (d, 2H, J = 7.08 Hz, ArH),
12.12 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 26.7, 123.7,
129.4, 129.8, 131.8, 140.7, 146.9, 149.7; LC-MS: Calcd. 210.2,
Observed 211.2; Analysis calcd. for C12H10N4: C, 68.56, H, 4.79, N,
26.65, found: C, 68.61, H, 4.77, N, 26.62.

2-(4-Methoxyphenyl)-1H-imidazo[4,5-b]pyrazine (4 h): Mp:
98–100 8C; 1H NMR (400 MHz, DMSO-d6): d 3.81 (s, 3H, OCH3),
7.09–7.13 (dd, 2H, J1 = 2.44 Hz, J2 = 8.36 Hz, ArH), 7.51–7.53 (dd,
2H, J1 = 1.96 Hz, J2 = 8.48 Hz, ArH), 8.84 (d, 2H, J = 7.56 Hz, ArH),
12.46 (br, 1H, NH); 13C NMR (100 MHz, DMSO-d6): d 57.1, 116.1
(2 peaks), 123.2 (3 peaks), 129.8, 146.0, 148.9, 162.1; LC-MS: Calcd.
226.2, Observed 227.2; Analysis calcd. for C12H10N4O: C, 63.71, H,
4.46, N, 24.76, found: C, 63.75, H, 4.44, N, 24.75.

3-(1H-Imidazo[4,5-b]pyrazin-2-yl)-N,N-dimethylbenzenamine
(4i): Mp: 109–111 8C; 1H NMR (400 MHz, DMSO-d6): d 3.12 (s, 6H,
CH3), 6.85–7.04 (m, 4H, ArH), 7.45–7.48 (dd, 2H,
J1 = 2.44 Hz, J2 = 8.36 Hz, ArH), 8.96 (s, 2H, ArH), 12.64 (br, 1H,
NH); 13C NMR (100 MHz, DMSO-d6): d 42.6, 114.5, 116.7, 119.1,
123.8, 132.4, 133.9, 146.6, 149.8, 152.4; LC-MS: Calcd. 239.3,
Observed 240.3; Analysis calcd. for C13H13N5: C, 65.25, H, 5.48, N,
29.27, found: C, 65.28, H, 5.47, N, 29.24.

2-(Pyridine-3-yl)-1H-Imidazo[4,5-b]pyrazine (4j): Mp: 86–
88 8C; 1H NMR (400 MHz, DMSO-d6): d 7.62 (dd, 1H,
J1 = 2.36 Hz, J2 = 8.48 Hz, ArH), 8.04 (d, 1H, J = 6.36 Hz, ArH),
e synthesis of some C-2 substituted imidazopyrazines by utilizing
crowave irradiation, Chin. Chem. Lett. (2015), http://dx.doi.org/
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Scheme 2. Synthesis of various substituted imidazopyrazines.

Table 1
Effect of various catalysts in Suzuki coupling of 3 with phenyl boronic acid.a

Entry Catalyst Base Solvent Yield 4a (%) Yield 5 (%)

1 Pd(dppf)Cl2 CsF DME 20 68

2 Pd(dppf)CH2Cl2 CsF DME 15 75

3 Pd2(dba)3 CsF DME Traces 90

4 PdCl2(CH3CN)2 CsF DME 23 60

5 (A-taphos)2PdCl2 CsF DME 57 35

6 (A-taphos)2PdCl2 Cs2CO3 DME 52 40

7 (A-taphos)2PdCl2 Cs2CO3 DMF 38 55

8 (A-taphos)2PdCl2 CsF DME-H2O (4:1) 87 Traces

9 (A-taphos)2PdCl2 CsF DME-H2O (4:1) 95b Traces

a Reaction conditions: Bromo intermediate (1 mmol), phenyl boronic acid

(1.5 mmol), catalyst (10 mol%), base (3 mmol), solvent, microwave irradiated at

120 8C for 30 min.
b Reaction carried out at 100 8C.

Table 2
Effect of various bases in Suzuki cross-coupling reaction.

Entry Base Yield (%)a

1 K2CO3 17

2 NaHCO3 20

3 Na2CO3 18
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8.64–8.69 (m, 3H, ArH), 12.78 (br, 1H, NH); 13C NMR (100 MHz,
DMSO-d6): d 122.9 (2 peaks), 125.6, 134.3, 135.6, 146.1, 148.8
(2 peaks), 150.7; LC-MS: Calcd. 197.2, Observed 198.2; Analysis
calcd. for C10H7N5: C, 60.91, H, 3.58, N, 35.51, found: C, 60.95, H,
3.57, N, 35.48.

2-(5-Chloropyridin-3-yl)-1H-imidazo[4,5-b]pyrazine (4k): Mp:
107–109 8C; 1H NMR (400 MHz, DMSO-d6): d 8.37 (s, 1H, ArH),
8.75–8.81 (m, 4H, ArH), 12.83 (br, 1H, NH); 13C NMR (100 MHz,
DMSO-d6): d 123.0 (2 peaks), 130.1, 134.9, 138.6, 145.8, 147.9,
148.8 (2 peaks); LC-MS: Calcd. 231.6, Observed 232.6 & 234.6;
Analysis calcd. for C10H6ClN5: C, 51.85, H, 2.61, N, 30.23, found: C,
51.89, H, 2.59, N, 30.21.

2-(1-Methyl-1H-indol-5-yl)-1H-Imidazo[4,5-b]pyrazine (4l):
Mp: 116–118 8C; 1H NMR (400 MHz, DMSO-d6): d 4.12 (s, 3H,
NCH3), 6.58–6.61 (dd, 1H, J1 = 2.24 Hz, J2 = 8.56 Hz, ArH), 6.94 (d,
1H, J = 7.28 Hz, ArH), 7.44–7.48 (m, 3H, ArH), 8.74, (d, 2H,
J = 7.04 Hz, ArH) 12.47 (br, 1H, NH); 13C NMR (100 MHz, DMSO-
d6): d 43.4, 104.1, 112.8, 118.1, 120.3, 122.9, 130.1 (3 peaks), 137.1,
145.9, 148.8; LC-MS: Calcd. 249.3, Observed 250.3; Analysis calcd.
for C14H11N5: C, 67.46, H, 4.45, N, 28.10, found: C, 67.49, H, 4.44, N,
28.07.

2-(Furan-2-yl)-1H-imidazo[4,5-b]pyrazine (4m): Mp: 80–
82 8C; 1H NMR (400 MHz, DMSO-d6): d 6.74–6.78 (m, 3H, ArH),
8.78 (d, 2H, J = 7.16 Hz, ArH), 12.68 (br, 1H, NH); 13C NMR
(100 MHz, DMSO-d6): d 106.4, 108.6, 123.4, 137.1, 144.1, 145.8,
155.4; LC-MS: Calcd. 186.2, Observed 187.2; Analysis calcd. for
C9H6N4O: C, 58.06, H, 3.25, N, 30.09, found: C, 58.10, H, 3.25, N,
30.07.

2-(2-Methylpyridin-4-yl)-1H-imidazo[4,5-b]pyrazine (4n):
Mp: 90–92 8C; 1H NMR (400 MHz, DMSO-d6): d 2.84 (s, 3H,
CH3), 7.57–7.61 (m, 2H, ArH), 8.74–8.79 (m, 3H, ArH), 12.37 (br, 1H,
NH); 13C NMR (100 MHz, DMSO-d6): d 26.7, 110.9, 114.1, 123.4,
146.5 (3 peaks), 148.8, 151.1, 159.8; LC-MS: Calcd. 211.2, Observed
212.2; Analysis calcd. for C11H9N5: C, 62.55, H, 4.29, N, 33.16,
found: C, 62.59, H, 4.27, N, 33.14.

3. Results and discussion

The parent imidazopyrazine core was synthesized by treating
the pyrazine 2,3 diamine 1 with CDI in THF at 80 8C (Scheme 1)
which procured the 2-hydroxyimidazopyrazine intermediate
2. The intermediate thus obtained was further brominated by
treating it with POBr3 in dichloroethane at 80 8C for 6 h to obtain
the 2-bromoimidazopyrazine intermediate 3 (Scheme 1). The
obtained bromo intermediate was then subjected to the palladium
catalyzed Suzuki cross-coupling reactions with diverse boronic
acids under microwave irradiation with the aim of synthesizing an
array of pharmacologically relevant C-2 substituted imidazopyr-
azines.

We started our initial screening by coupling the intermediate 3
with phenyl boronic acid since the formation of product could be
easily identified by TLC and LC-MS (Scheme 2). A sequence of
palladium catalysts in combination with various bases and
solvents were investigated at 120 8C, and the coupling reaction
was carried out in a microwave oven for 30 min (Table 1). To our
disappointment, we could not obtain the required product in
acceptable yield in any of the explored conditions and the
debrominated product 5 was obtained as the major product. The
use of various catalysts like Pd(dppf)Cl2, Pd(dppf)CH2Cl2,
Scheme 1. Synthesis of bromo intermediate 3.

Please cite this article in press as: M.N. Joy, et al., A facile access for the
the palladium catalyzed Suzuki cross-coupling reaction under mic
10.1016/j.cclet.2015.08.015
PdCl2(CH3CN)2, Pd2(dba)3 etc. were found to be ineffective
(Table 1, entries 1–4). Even though we observed the formation
of product when (A-taphos)2PdCl2 was used as a catalyst and CsF as
base in DME, the reaction could not reach completion even after
continuing for 1 h (Table 1, entry 5).

We observed that the nature of base and the solvent system
have a determining influence in facilitating the coupling reaction
(Table 1, entries 6–8). We presumed that the lack of solubility of all
the reagents in the reaction system was the primary reason for the
incompleteness of the reaction. The hypothesis proved to be true
when we observed that the formation of product was procured in
acceptable yield when water was added as a co-solvent to the
reaction mixture (Table 1, entry 8). Finally, we obtained the
product in excellent yield when DME-H2O (4:1) was used as a
solvent system at 100 8C (Table 1, entry 9). Among the various
bases screened (Table 2), CsF was found to be the best one which
rendered the diaryls in exceptional yield with lesser side-products.

The plausible reason for the debromination could be the attack
of metal alkoxides at the Pd(II) oxidative adduct complex followed
by hydride migration and reductive elimination [8]. The attack of
borate complex at the same Pd(II) oxidative adduct complex leads
to the desired coupled product which could be well facilitated by
the electronic effect of dimethyl amino group present in
(A-taphos)2PdCl2 catalyst, thereby increasing the basicity of the
phosphine ligand attached to the palladium center. Similarly, the
superiority of CsF to other bases could be rationalized by the fact
that CsF generated the most reactive boronate species and
4 NaOH Traces

5 Cs2CO3 65

6 K3PO4 70

7 CsF 95

Reaction conditions: Bromo intermediate (1 mmol), phenyl boronic acid

(1.5 mmol), (A-taphos)2PdCl2 (10 mol%), Base (3 mmol), DME-H2O (4:1), microwave

irradiated at 100 8C for 30 min.
a Isolated yield.
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Table 3
Suzuki coupling of 2-bromoimidazopyrazine with various Boronic acids.a

Entry Bromo intermediate Boronic acid Product (4a-n) Yield (%)b
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N
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N
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N
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N
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OH
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N
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4h

93

9 3
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OH

OH
N

N

N
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H

N

N

4i

78
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Table 3 (Continued )

Entry Bromo intermediate Boronic acid Product (4a-n) Yield (%)b
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OH
Cl

N
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HO
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N

N
H

N O

4m

90

14 3

N

B
OH

OH

N

N

N
H

N
N

4n

95

a Conditions: Bromo intermediate (1 mmol), boronic acid (1.5 mmol), (A-taphos)2PdCl2 (10 mol%), CsF (3 mmol), DME-H2O (4:1), microwave irradiated at 100 8C for 30 min.
b Isolated yield.
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facilitated transmetallation quickly which resulted in cross-
coupling rather than debromination [9].

With the optimized condition in hands, our next attention was
to evaluate the scope of the developed methodology. A series of
sterically and electronically diverse boronic acids were coupled
272
273
274
275
276
277
278
279
280
281

282

283
284
285
286
287
288
289
290Scheme 3. Proposed mechanism of the coupling reaction.
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with the bromo intermediate 3, and our results are summarized in
Table 3. All the boronic acids coupled effectively to render the
diaryls in satisfactory to excellent yields. Electron rich boronic
acids gave exceptional yields of the coupled product whereas
electron deficient boronic acids gave slightly lesser yields (Table 3,
entries 2–8). Sterically crowded boronic acids furnished the
coupled product in slightly lesser yields even after continuing
the reaction for 1 h (Table 3, entries 9 and 12).

A plausible mechanism for the Suzuki cross-coupling reaction
has been proposed (Scheme 3). The first step constitutes the
oxidative addition of bromo intermediate with palladium to form
an organo-palladium species. The subsequent steps involve the
formation of a boronate complex which facilitates transmetalla-
tion and reductive elimination of the intermediate 3 to form the
coupled product and thereby completing the catalytic cycle.

4. Conclusion

In summary, we have achieved a rapid, concise and efficient
protocol for the synthesis of a series of C-2 substituted
imidazopyrazines under microwave irradiation. This method
provided an efficient pathway for the synthesis of an assortment
of pharmacologically relevant molecules and could be extended for
the coupling of other densely functionalized heterocycles in future.
The biological screening of the newly synthesized molecules will
be conducted in due course and will be communicated shortly.
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