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Interest in magnetic nanoparticles!' has increased consider-
ably lately, with diverse applications as magnetic liquids,® in
catalysis,” in biotechnology and biomedicine,” and in
magnetic resonance spectroscopy.’! A principal problem
associated with naked metallic nanoparticles is their high
chemical reactivity, in particular oxidation by air. This
drawback can be overcome by coating the nanoparticles
with SiO,, metal oxides, gold, or carbon. Several applications
of these nanoparticles for quasi-homogeneous catalysis have
been disclosed. These particles are typically removed after the
reaction by exploiting their magnetic properties.*f

An unexploited and very important feature of magnetic
materials is the possibility of heating them in an electro-
magnetic field. It has been demonstrated that isolated
magnetic nanoparticles show magnetic behavior different
from that in the bulk. These magnetic nanoparticles when
coated with a silica shell can show superparamagnetic
behavior.*”! The silica coating prevents the magnetic cores
from coupling, thereby preserving their superparamagnetic
properties. These composites do not have a residual magnet-
ization and their magnetization curves are anhysteretic.
However, the susceptibility of a superparamagnetic material
is almost as high as that of a ferromagnetic material.

The concept of magnetically induced hyperthermia is
based on specific properties of the magnetic nanoparticles
upon exposure to a constantly changing magnetic field.!!
Surprisingly, this property of magnetic nanoparticles has so
far not been applied in chemical synthesis,” although organic
chemists are constantly testing new technologies such as
microwave irradiation, solid-phase synthesis, and new reactor
designs in their work with the goal of performing syntheses
and workups more efficiently."”]
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Herein we disclose the first application of heating
magnetic silica-coated” nanoparticles in an electromagnetic
field. We demonstrate that these hot particles can be ideally
used inside a microfluidic fixed-bed reactor for performing
chemical syntheses including catalytic transformations. Thus,
besides conventional and microwave heating, magnetic
induction in an electromagnetic field is a third way to
introduce thermal energy to a reactor.”

Superparamagnetic materials like nanoparticles 1 can be
heated in medium- or high-frequency fields."'! As the
technical setup for the middle-frequency field (25 kHz) is
simpler (see Figure 1b,c), we investigated the electromag-
netic induction of heat in magnetic nanoparticles in this
frequency range. In principal, the processes can be operated
in a cyclic or a continuous mode. The inductor can accom-
modate a flowthrough reactor!!”!? (glass; 14 cm length, 9 mm
internal diameter), which is filled with superparamagnetic
material 1. The reactor can be operated up to a backup
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Figure 1. a) Drawing of magnetic nanoparticles 1”! (TEM images are
shown in the Supporting Information); b) inductor and flow reactor
filled with magnetic nanoparticles; c) experimental setup for either
cyclic operation or continuous operation.
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pressure of 5 bar. We initially determined the heating profiles
of other ferromagnetic materials besides magnetic nano-
particles 1, such as SiC, iron powder, and Fe;O, (Figure 2). We
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Figure 2. Heating profile of different materials in an electromagnetic
field. Applied power output refers to the percentage of the power
provided by the magnetic field that is being transferred into the
magnetic material to be heated. 1000 parts per thousand (ppt)!' is
therefore the maximum; e: nanoparticle 1, m: Fe;O,, A: Fe powder,
o: SiC

found that SiC could be heated only under high-frequency
conditions (> 1000 kHz)!M ¥ while iron powder heated up
only moderately in a middle-frequency field (MF). The
behavior of Fe;O, in the electromagnetic field was similar
to that of magnetic nanoparticles 1. However, as this material
is not protected with an inert coating and has reduced
mechanical stability, we did not study it further. Additionally,
the silica coating on 1 allows for further functionalization
(vide supra).

By exploiting the unique properties of our superparamag-
netic nanoparticles we performed several transformations
under continuous-flow conditions: the transesterification of 2
(Reaction 1 in Scheme 1), condensation to form thiazole 6
(Reaction 2), and Claisen rearrangements of 7 (Reaction 3)
using magnetic nanoparticles 1 as a packed bed inside the flow
reactor. Furthermore, we performed catalytic transformations
such as the Buchwald-Hartwig amination of aryl bromide 11
(Reaction 4) and enyne metathesis to yield dihydrofuran 13
(Reaction 5). A simplified purification procedure was dem-
onstrated also for the Wittig reaction of benzaldehyde (14)
and ylide 15 (Reaction 6). In this case an additional packed-
bed reactor filled with silica was implemented behind the first
reactor, and the ethyl ester 16 was obtained in quantitative
yield after simple removal of the solvent. Finally, the Claisen
rearrangement and the Hartwig—-Buchwald amination were
repeated under identical conditions with the same reactor
except that the reactor was heated in an oil bath. The yields of
isolated product after one run were reduced because com-
plete conversion could not be achieved. This observation can
be rationalized by the fact that the inductively induced heat is
generated inside the reactor directly where the reaction takes
place.

Additionally, as a result of the silica coating, the surface of
the magnetic nanoparticles can be functionalized."! We
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Scheme 1. Continuous-flow syntheses with inductive heating (conven-
tional heating). Complete transformation in one run; 0.5-2 mmol scale
(see the Supporting Information); yields of isolated products.®

found that palladium particles obtained by reductive precip-
itation of ammonium-bound tetrachloropalladate salts gave
nanoparticles 18 which showed good catalytic activity under
flow conditions. The preparation of 18 is briefly depicted in
Scheme 2 and is based on our earlier studies.™

We employed these particles in various Pd-catalyzed
cross-coupling reactions (Scheme 3). In these reactions only
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Scheme 2. Preparation of magnetic nanoparticles functionalized with
Pd°.
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Scheme 3. Suzuki-Miyaura and Heck coupling reactions under flow
conditions (cyclic operation) with inductive heating of 18 (1 mmol
scale; yields of isolated products). Conditions: a) 1.5 equiv phenyl
boronic acid, 1 equiv aryl bromide, 2.4 equiv CsF, 2.8 mol% 18, DMF/
H,0, 1 h, flow rate: 2 mLmin™", inductor: 750 ppt,"”! 25 kHz (100°C);
b) 1 equiv aryl iodide, 3 equiv styrene, 3 equiv nBu;N, 2.8 mol % 18,
DMF, 1 h, flow rate: 2 mLmin~', inductor: 325 ppt, 25 kHz (120°C)."

little leaching of palladium was found (ICP-MS analytic
indicated 34 ppm for Suzuki-Miyaura reactions and 100 ppm
for Heck reactions), and the catalyst could be reused more
than three times without a decrease in activity.

In conclusion, we have disclosed the first application of
magnetic nanoparticles as heatable media in an electro-
magnetic field for chemical synthesis. We have demonstrated
that these materials can ideally be used in continuous-flow
processes. In addition, we have shown that the silica coating
used to protect the nanoparticles based on Fe;O,/Fe,0O; can
be further modified with catalytically active palladium. Our
experimental setup is much simpler than that for heating a
flowthrough reactor by microwave irradiation. It must be
noted that not only nanoparticles based on Fe;O,/Fe,O; can
be heated efficiently in electromagnetic fields but principally
also those based on Co and Ni, and other materials (e.g.
transition metals and lanthanides and combinations such as
alloys).™® Thus, this inductive heating technique has great
potential both in laboratory and industrial processes. Current
work is dedicated to the development of new reactors that can
withstand higher temperatures and pressures so that reactions
can be accelerated further.
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