Synthetic Methods |Hot Paper|

Chiral Phosphoric Acid-Catalyzed Enantioselective Formal [3+2] Cycloaddition of Azomethine Imines with Enecarbamates

Yang Wang, Qian Wang, and Jieping Zhu*^[a]

Abstract: The first catalytic asymmetric inverse electron demand 1,3-dipolar cycloaddition of azomethine imines with enecarbamates has been developed. Isoquinoline-fused pyrazolidines containing two or three contiguous stereogenic centers were obtained in high yields with excellent regio-, diastereo-, and enantioselectivities. The pyr-azolidine ring can be opened to install an aminal, α -amino nitrile, or homoallylamine function with an excellent control of the newly generated stereogenic center. Access to aminobenzo[a]quinolizidine is also documented.

1,3-Dipolar cycloadditions (1,3-DCs) of azomethine imines with alkenes/alkynes are useful methods for the assembly of fivemembered heterocycles.^[1] The resulting dihydropyrazoles or pyrazolidines are structural motifs found in natural products and bioactive compounds.^[2] Although enantioselective normal electron demand (NED) 1,3-DCs of azomethine imines with electron-deficient alkenes are well established,^[3] the inverse electron demand (IED) cycloaddition between azomethine imines and electron-rich alkenes is far less developed.^[4,5] Enol ether 1a and enol thioether 1b have been successfully employed as electron-rich olefins in the enantioselective IED 1,3-DCs, whereas enamides/enecarbamates have not been used thus far. Indeed, it has been reported that enamides 2a and 2b^[6] were incompetent dipolarphiles in the attempted enantioselective [3+2] cycloadditions with N-acyl hydrazone (Scheme 1).^[7] Assuming that the activation mode of azomethine imines might be different from that of N-acyl hydrazones, we set out to investigate the IED [3+2] cycloadditions between azomethine imines 3 and enecarbamates 4. We report herein that in the presence of a chiral spinol-derived phosphoric acid,^[8,9] heteroannulation between **3** and **4** occurs smoothly to afford the isoquinoline-fused aminopyrazolidines 5 in high yields with excellent regio-, diastereo-, and enantioselectivities (Scheme 1). Conditions for the cycloaddition involving β -substituted enecarbamates have also been optimized leading to cy-

[a]	Dr. Y. Wang, Dr. Q. Wang, Prof. Dr. J. Zhu
	Laboratory of Synthesis and Natural Products
	Institute of Chemical Sciences and Engineering
	Ecole Polytechnique Fédérale de Lausanne
	EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland)
	E-mail: jieping.zhu@epfl.ch
	Homepage: http://lspn.epfl.ch

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201601548.

Scheme 1. Enantioselective IED 1,3-DCs of electron-rich alkenes with azomethine imines.

cloadducts with a penta-substituted pyrazolidine unit (R^2 = alkyl). The utility of this chemistry was further illustrated by the post-transformation of the resulting cycloadduct to functionalized tetrahydroisoquinolines and benzoquinolizidine. It is important to note that in Maruoka's chiral dicarboxylic acid-catalyzed heteroannulation of C,N-cyclic azomethine imines with *tert*-butyl vinyl ether, the reaction is *exo*-selective.^[4a] However, our reaction is NHCbz-*endo* selective; therefore, indicating a significant mechanistic deviation from Maruoka's reaction.

The C,N-cyclic azomethine imine **3a** ($R^1 = H$) and benzyl *N*-vinyl carbamate **4a** ($R^2 = H$) were chosen as model substrates. After initial survey of the solvents, reaction temperatures, and concentrations using **6a** as a catalyst (0.1 equiv; Figure 1), we chose to perform the reaction in CH₂Cl₂ (0.1 m) at -20 °C for catalyst screening. As shown in Table 1, all chiral phosphoric

Figure 1. Structures of chiral phosphoric acids.

Chem. Eur. J. 2016, 22, 8084 - 8088

Wiley Online Library

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMISTRY A European Journal
Communication

Table 1. Survey of reaction conditions. ^[a] Image: N_N_N_Bz 3a 4a CPA (10 mol%) DCM (0.1 M), -20 °C 5a NHCbz					
Entry	Catalyst	<i>t</i> [h]	Conv. [%]	d.r.	e.r. ^[b]
1	6a	36	>99	>19:1	69.9:30.1
2	6 b	20	>99	>19:1	68.1:31.9
3	бc	20	>99	>19:1	67.9:32.1
4	6 d	20	>99	>19:1	65.3:34.7
5	бе	20	>99	>19:1	51.7:48.3
6	6 f	20	>99	>19:1	57.9:42.1
7	6 g	20	>99	>19:1	61.9:38.1
8	6 h	20	>99	>19:1	64.1:35.9
9	6i	20	>99	>19:1	55.1:44.9
10	6j	20	>99	>19:1	65.1:34.9
11	7	20	>99	>19:1	53.3:46.7
12	8	20	>99	>19:1	53.3:46.7
13	9	20	>99	>19:1	80.0:20.0
14	10 a	20	>99	>19:1	93.9:6.1
15	10 b	20	>99	>19:1	97.6:2.4
16	10 c	20	>99	>19:1	94.9:5.1
[a] Reaction conditions: 3a (0.10 mmol), 4a (0.20 mmol), and (<i>S</i>)-phosphoric acid (0.01 mmol) in DCM (c 0.1 M) at -20 °C. [b] Determined by SFC (supercritical fluid chromatography) analysis on a chiral stationary phase					

acids (CPAs) are capable of catalyzing the [3+2] cycloaddition between 3a and 4a to afford the desired adduct 5a in excellent yield and diastereoselectivity (d.r. > 19:1). However, the enantioselectivity varied significantly depending on the backbone structure of CPAs. With (S)-binol-derived CPAs (6a-6j) having different steric and electronic properties as catalyst, 5 a was isolated with an e.r. of 69.9:30.1 at best (entries 1-10). The more acidic N-triflyl phosphoramide 7^[10] was also inefficient for this purpose (entry 11), so was the bulky imidodiphosphoric acid $\mathbf{8}^{[11]}$ (entry 12). An improved enantioselectivity was observed with the octahydro-(S)-binol-derived CPA 9 (e.r.: 80:20; entry 13). A breakthrough came when STRIP (6,6'-bis(2,4,6-triisopropylphenyl)-1,1'-spirobiindan-7,7'-diyl hydrogenphosphate, 10a) was employed as a catalyst to afford 5a with an e.r. of 93.9:6.1 (entry 14).^[12] Encouraged by this result, a series of (S)-spinol-derived CPAs were synthesized. Among them, the previous unknown CPAs 10b and 10c were found to be the most promising. With 10b as a catalyst (0.1 equiv), the reaction of 3a with 4a afforded 5a in 80% yield with an e.r. of 97.6:2.4 (entry 15).

With optimized conditions in hand (**10b** (0.1 equiv), CH_2CI_2 (*c* 0.1 m), -20 °C, 24 h), the generality of the reaction was next examined (Table 2). A remarkably broad range of C,N-cyclic azomethine imines **3** could be converted to the corresponding cycloadducts **5** in excellent yields and enantioselectivities. Electron-donating (entries 2–6) and -withdrawing substituents (entries 7–13), irrespective of their positions on the aromatic ring, were well tolerated, providing the *endo* adducts with uniformly high diastereo- and enantioselectivities. It was nevertheless noted that a substituent at the C6-position of the azomethine imine gave in general a slightly higher e.r. of the cycloadducts

Table 2. Scope of asymmetric IED 1,3-DC with benzyl \textit{N} -vinyl carbamate. ^[a]					
R ¹	→ + → NHC 3 4a	bz 10b (10 mo DCM (0.1 N -20 °C, 24 h	$\xrightarrow{1}{1} \overset{1}{\xrightarrow{1}} \overset$	5 NHCbz	
Entry	Product 5	Yield [%] ^[b]	d.r.	e.r. ^{icj}	
1	$R^1 = H$ (5 a)	80	d.r.	97.6:2.4	
2	R ¹ =5-Me (5 b)	75	>19:1	95.3:4.7	
3	R ¹ =6-Me (5 c)	79	>19:1	98.6:1.4	
4	R ¹ =7-Me (5 d)	77	>19:1	94.9:5.1	
5	$R^1 = 8-Me$ (5 e)	80	>19:1	94.2:5.8	
6 ^[d]	$R^1 = 7$ -MeO (5 f)	68	>19:1	97.5:2.5	
7	$R^1 = 7-F$ (5 q)	83	>19:1	95.4:4.5	
8	$R^1 = 7 - Cl(5h)$	70	> 19:1	95.1:4.9	
9	$R^1 = 5-Br(5i)$	72	>19:1	95.4:4.6	
10	$R^1 = 6-Br(5i)$	76	>19:1	98.3:1.7	
11	$R^1 = 7-Br (5 k)$	81	>19:1	96.5:3.5	
12	$R^1 = 5 - CO_2 Me(51)$	72	>19:1	97.8:2.2	
13	$R^1 = 6 - CF_3 (5 m)$	76	>19:1	98.8:1.2	
[a] Reaction conditions: 3a (0.10 mmol), 4a (0.20 mmol), and (<i>S</i>)- 10b (0.01 mmol) in DCM (c 0.1 M) at -20 °C. [b] Isolated yield. [c] Determined by SFC analysis on a chiral stationary phase. [d] $t = 48$ h.					

(entries 3, 10, and 13). The absolute configuration of **5j** was determined by X-ray crystallographic analysis^[13] and those of other adducts were assigned accordingly.

To further explore the scope of this novel catalytic enantioselective 1,3-DCs, both (Z)- and (E)-benzyl N-prop-1-en-1-yl carbamates (Z)-4b ($R^2 = Me$) and (E)-4b ($R^2 = Me$) were synthesized^[14] and submitted to our standard conditions. Although the reaction of (E)-4b with 3a afforded a mixture of two diastereomers, the reaction of (Z)-4b gave a single diastereomer, albeit with low conversion and a negligible e.r. (55.3:44.7). Therefore, screening of CPAs using (Z)-4b as dipolarphile was carried out that allowed us to identify H₈-binol-based CPA 9 as a suitable catalyst. Under optimized conditions (3 a (0.1 mmol), (Z)-4b (0.2 mmol), 9 (0.01 mmol, 0.1 equiv), CH₂Cl₂ (с 0.1 м), -20 °C, 4 days), the cycloadduct **5 n** was isolated as a single diastereomer in 91% yield with an e.r. of 96:4 (Table 3, entry 1). To the best of our knowledge, this represents the first example of IED 1,3-DCs between the C,N-cyclic azomethine imine and the electron-rich internal double bond.

As shown in Table 3, a wide range of C,N-cyclic azomethine imines containing electron-withdrawing or -donating substituents at different positions of the aromatic ring reacted with (*Z*)-**4b** to afford the corresponding cycloadducts **5o**-**5t** in excellent yields with excellent diastereo- and enantioselectivities (entries 2–7). Other β -substituted enecarbamates (*Z*)-**4c** (R²= Et), (*Z*)-**4d** (R²=*i*Pr), and (*Z*)-**4e** (R²=Bn) underwent 1,3-DC with **3j** to provide the corresponding cycloadducts in excellent yields and diastereoselectivities, albeit with slightly reduced enantioselectivities (entries 8–10). We note that increasing the size of R² substituent decelerated the reaction. Therefore, reactions involving (*Z*)-**4d** (R²=*i*Pr) and (*Z*)-**4e** (R²=Bn) had to be performed at room temperature that led to a decreased enan-

www.chemeurj.org

Table 3. Scope of asymmetric IED 1,3-DC of azomethine imines with (Z)- β -substituted enecarbamates. ^[a]						
R ¹ I	+ + NHCbz - NBz R ² 3 4 Product 5	9 (10 mol%) DCM (0.1 M) -20 °C, 4 d Yield [%] ^(b)	R ¹	e.r. ^[c]		
1 [d]	$P^1 - H \cdot P^2 - Mo (5 p)$		 > 10·1	06.0.4.0		
2 ^[e]	$R^{1} = 7$ -Me: $R^{2} = Me(50)$	89	> 19:1	98.1:1.9		
3	$R^{1} = 8$ -Me; $R^{2} = Me$ (5 p)	93	> 19:1	98.9:1.1		
4	$R^1 = 7$ -MeO; $R^2 = Me$ (5 g)	91	> 19:1	97.5:2.5		
5	$R^1 = 5-Br; R^2 = Me(5r)$	92	>19:1	97.8:2.2		
6	$R^1 = 6-Br; R^2 = Me (5 s)$	94	>19:1	98.6:1.4		
7	$R^1 = 7-Br; R^2 = Me$ (5t)	90	>19:1	97.0:3.0		
8 ^[f]	$R^1 = 6-Br; R^2 = Et (5 u)$	93	>19:1	93.6:6.4		
9 ^[f,g]	R ¹ =6-Br; R ² = <i>i</i> Pr (5 v)	89	>19:1	89.6:10.4		
10 ^[f,h]	$R^1 = 6-Br; R^2 = Bn (5 w)$	95	>19:1	90.0:10.0		
[a] Reaction conditions: 3 (0.10 mmol), 4 (0.20 mmol), and (5)- 9 (0.01 mmol) in DCM (c 0.1 m) at -20 °C. [b] Isolated yield. [c] Determined by SFC analysis on a chiral stationary phase. [d] $t=5$ d. [e] $t=48$ h. [f] 3 Å MS was added. [g] RT, 48 h. [h] RT, 24 h.						

tioselectivity. Gratefully, addition of molecular sieves was found to be beneficial in these cases (entries 8–10).

The absolute configuration of **5** s was determined by X-ray crystallographic analysis. The fact that the reaction between (*E*)-**4** b and **3** a under optimized conditions afforded the cycloadduct in a lower yield with much reduced enantioselectivity (major isomer: yield 67%, e.r. 59:11; minor isomer: yield 25%, e.r. 81.5:18.5) excluded the possibility of the isomerization of (*Z*)-**4** b to (*E*)-**4** b before the annulation process. In addition, resubmitting the cycloadduct **5** a to the standard conditions did not cause the epimerization of the aminal stereogenic center. Therefore, the observed *trans* relationship between R² and the NHCbz groups in cycloadduct **5** indicated that the present IED 1,3-DCs between **3** and (*Z*)-**4** b most probably went through a stepwise mechanism. We assumed that the CPA acted as a bifunctional catalyst activating both the nucleophile and the electrophile via transition state **A** (Scheme 2). A pseudo-intra-

Chem. Eur. J. 2016, 22, 8084 – 8088

www.chemeurj.org

8086

molecular attack of the enecarbamate to the *Si*-face of the azomethine imine would afford intermediate **B** that upon aminal formation afforded the cycloadduct **5**. In line with this hypothesis, benzyl *N*-methyl-*N*-vinyl carbamate, which lack the NH function, failed to react with **3a** under our standard conditions.

Post-functionalization of cycloadducts **5** was next investigated to illustrate the synthetic potential of this novel IED 1,3-dipolar cycloaddition. Treatment of **5** a with Sml₂ in MeOH at room temperature^[15] afforded chiral aminal **11** (98%) as the only diastereoisomer through selective cleavage of the N–N bond (Scheme 3).^[16] Taking advantage of the aminal function

Scheme 3. Reductive cleavage of the N-N bond of the cycloadduct.

in **5**, its Lewis acid-mediated diastereoselective functionalization was examined. Reaction of **5 a** with TMSCN (10.0 equiv) in the presence of an excess of BF₃·Et₂O afforded α -amino nitrile **12** in 51% yield with a d.r. of > 19:1 (Scheme 4). The relative stereochemistry of **12** was determined without ambiguity by its X-ray crystallographic analysis. Using allyltrimethylsilane as nucleophile, allylamine **13** was similarly prepared in 69% yield with a d.r. of > 19:1. Subsequent Sml₂-mediated reductive N–N bond cleavage^[15] of **13** provided C1-substituted tetrahydroisoquinoline **14** with a 1,3-diamine unit in 97% yield.^[17] The tetra-

Scheme 4. Synthetic transformations of the cycloadduct.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

hydroisoquinoline bearing a stereogenic center at the C1-position represents a fundamental structural motif in many bioactive compounds.^[18] In addition, **14** was readily converted in one operation to aminobenzo[*a*]quinolizidine **15** (Scheme 4), which has significant importance in the development of selective α 2-adrenoceptor antagonist and DDP-IV inhibitor for the treatment of type II diabetes.^[19] The observed strong NOE effect between H_a and H_b indicated that both protons are in *cis*-diaxial positions that allowed us to determine the relative stereochemistry of compound **15**, hence that of **13** and **14**. The high diastereoselectivity observed in these two nucleophilic addition reactions was tentatively explained by invoking the H-bonded 6-membered intermediate **C**. Addition of a nucleophile to the sterically more accessible *Re*-face of the imine would account for the observed stereoselectivity.

In summary, we have developed the first chiral phosphoric acid-catalyzed enantioselective inverse electron demand 1,3-dipolar cycloaddition reactions between C,N-cyclic azomethine imines and enecarbamates. The reaction afforded functionalized isoquinoline-fused pyrazolidines in high yields with excellent regio-, diastereo-, and enantioselectivities. The utility of this transformation was illustrated by the subsequent conversion of the resulting cycloadducts to a diverse set of C1-substituted tetrahydroisoquinolines and benzoquinolizidine.

Acknowledgements

Financial supports from EPFL (Switzerland) and the Swiss National Science Foundation (SNSF) are gratefully acknowledged. Y.W. is the recipient of a Marie Curie International Incoming Fellowship (PIIF-GA-2013-622134) of the 7th Framework Program of the European Union. We are grateful to Dr. Rosario Scopelliti for performing X-ray structural analysis.

Keywords: azomethines · carbamates · cycloaddition · organocatalysis · tetrahydroisoquinolines

- [1] For recent reviews, see: a) A. Moyano, R. Rios, *Chem. Rev.* 2011, 111, 4703; b) C. Nájera, J. M. Sansano, M. Yus, *Org. Biomol. Chem.* 2015, 13, 8596.
- [2] a) S. Kumar, S. Bawa, S. Drabu, R. Kumar, H. Gupta, *Recent Pat. Anti-Infect. Drug Discovery* **2009**, *4*, 154; b) X.-H. Liu, B.-F. Ruan, J. Li, F.-H. Chen, B.-A. Song, H.-L. Zhu, P. S. Bhadury, J. Zhao, *Mini Rev. Med. Chem.* **2011**, *11*, 771; c) L. M. Blair, J. Sperry, *J. Nat. Prod.* **2013**, *76*, 794.
- [3] a) W. Li, J. Wei, Q. Jia, Z. Du, K. Zhang, J. Wang, Chem. Eur. J. 2014, 20, 6592; b) C. Izquierdo, F. Esteban, A. Parra, R. Alfaro, J. Alemán, A. Fraile, J. L. G. Ruano, J. Org. Chem. 2014, 79, 10417; c) S. Milosevic, A. Togni, J. Org. Chem. 2013, 78, 9638; d) J. Li, X. Lian, X. Liu, L. Lin, X. Feng, Chem. Eur. J. 2013, 19, 5134; e) H. Kawai, Z. Yuan, E. Tokunaga, N. Shibata, Org. Lett. 2012, 14, 5330; f) T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu, K. Maruoka, J. Am. Chem. Soc. 2010, 132, 4076; g) H. Suga, T. Arikawa, K. Itoh, Y. Okumura, A. Kakehi, M. Shiro, Heterocycles 2010, 81, 1669; h) M. P. Sibi, D. Rane, M. Stanley, T. Soeta, Org. Lett. 2008, 10, 2971; j) H. Suga, A. Funyu, A. Kakehi, Org. Lett. 2007, 9, 97; j) W. Chen, W. Du, Y.-Z. Duan, Y. Wu, S.-Y. Yang, Y.-C. Chen, Angew. Chem. Int. Ed. 2007, 46, 7667; Angew. Chem. 2007, 119, 7811; k) W. Chen, X.-H. Yuan, R. Li, W. Du, Y. Wu, L.-S. Ding, Y. C. Chen, Adv. Synth. Catal. 2006, 348, 1818; l) A. Suárez, C. W. Downey, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11244; m) R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778.
- [4] a) T. Hashimoto, M. Omote, K. Maruoka, Angew. Chem. Int. Ed. 2011, 50, 3489; Angew. Chem. 2011, 123, 3551; b) R.-Y. Zhu, C.-S. Wang, J. Zheng,

F. Shi, S.-J. Tu, *J. Org. Chem.* **2014**, *79*, 9305; c) M. Yoshida, N. Sassa, T. Kato, S. Fujinami, T. Soeta, K. Inomata, Y. Ukaji, *Chem. Eur. J.* **2014**, *20*, 2058; for a chiral amine-catalyzed reaction, see: d) W. Li, Q. Jia, Q. Du, K. Zhang, J. Wang, *Chem. Eur. J.* **2014**, *20*, 4559.

- [5] For enantioselective IED 1,3-DCs between N-acyl hydrazones and electron-rich alkenes, see: a) X. Hong, H. B. Küçük, M. S. Maji, Y.-F. Yang, M. Rueping, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 13769; b) M. Rueping, M. S. Maji, H. B. Küçük, I. Atodiresei, Angew. Chem. Int. Ed. 2012, 51, 12864; Angew. Chem. 2012, 124, 13036; c) A. Zamfir, S. B. Tsogoeva, Synthesis 2011, 1988; d) K. Tanaka, T. Kato, Y. Ukaji, K. Inomata, Heterocycles 2010, 80, 887; e) S. Shirakawa, P. J. Lombardi, J. L. Leighton, J. Am. Chem. Soc. 2005, 127, 9974; f) Y. Yamashita, S. Kobayashi, J. Am. Chem. Soc. 2004, 126, 11279; g) S. Kobayashi, H. Shimizu, Y. Yamashita, H. Ishitani, J. Kobayashi, J. Am. Chem. Soc. 2002, 124, 13678.
- [6] For reviews on enamides and enecarbamates, see: a) M.-X. Wang, Chem. Commun. 2015, 51, 6039; b) G. Bernadat, G. Masson, Synlett 2014, 25, 2842; c) R. Matsubara, S. Kobayashi, Acc. Chem. Res. 2008, 41, 292; d) D. R. Carbery, Org. Biomol. Chem. 2008, 6, 3455.
- [7] See note 16 of ref. [5a]. Very recently, a [3+2] cycloaddition between enamides and azomethines was reported, see: Y. Xu, Y. Liao, L. Lin, Y. Zhou, J. Li, X. Liu, X. Feng, ACS Catal. 2016, 6, 589.
- [8] a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, *Angew. Chem. Int. Ed.* 2004, 43, 1566; *Angew. Chem.* 2004, 116, 1592; b) D. Uraguchi, M. Terada, *J. Am. Chem. Soc.* 2004, 126, 5356.
- [9] For recent reviews on a chiral phosphoric acid, see: a) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047; b) J. Lv, S. Luo, Chem. Commun. 2013, 49, 847; c) P. Li, H. Yamamoto, Top. Curr. Chem. 2011, 37, 161; d) J. Yu, F. Shi, L.-Z. Gong, Acc. Chem. Res. 2011, 44, 1156; e) D. Kampen, C. M. Reisinger, B. List, Top. Curr. Chem. 2009, 291, 395; f) M. Terada, Synthesis 2010, 1929; g) M. Hatano, K. Ishihara, Synthesis 2010, 3785; h) A. Zamfir, S. Schenker, M. Freund, S. B. Tsogoeva, Org. Biomol. Chem. 2010, 8, 5262; i) X. Yu, W. Wang, Chem. Asian J. 2008, 3, 516; j) T. Akiyama, Chem. Rev. 2007, 107, 5744.
- [10] a) D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626; b) M. Rueping, B. J. Nachtsheim, W. Ieawsuwan, I. Atodiresei, Angew. Chem. Int. Ed. 2011, 50, 6706; Angew. Chem. 2011, 123, 6838.
- [11] a) I. Čorić, B. List, Nature 2012, 483, 315; b) S. Liao, I. Čorić, Q. Wang, B. List, J. Am. Chem. Soc. 2012, 134, 10765; c) J. H. Kim, I. Čorić, S. Vellalath, B. List, Angew. Chem. Int. Ed. 2013, 52, 4474; Angew. Chem. 2013, 125, 4570; d) J.-B. Gualtierotti, D. Pasche, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2014, 53, 9926; Angew. Chem. 2014, 126, 10084.
- [12] a) I. Čorić, S. Müller, B, List, J. Am. Chem. Soc. 2010, 132, 17370; b) F. Xu, D. Huang, C. Han, W. Shen, X. Lin, Y. Wang, J. Org. Chem. 2010, 75, 8677; c) B. Xu, S.-F. Zhu, X.-L. Xie, J.-J. Shen, Q.-L. Zhou, Angew. Chem. Int. Ed. 2011, 50, 11483; Angew. Chem. 2011, 123, 11685; d) D. M. Rubush, M. A. Morges, B. J. Rose, D. H. Thamm, T. Rovis, J. Am. Chem. Soc. 2012, 134, 13554; e) J. Wu, Y.-M. Wang, A. Drljevic, V. Rauniyar, R. J. Phipps, F. D. Toste, Proc. Natl. Acad. Sci. USA 2013, 110, 13729; f) Z. Chen, B. Wang, Z. Wang, G. Zhu, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 2027; Angew. Chem. 2013, 125, 2081; g) J. Guin, G. Varseev, B. List, J. Am. Chem. Soc. 2014, 53, 2194; Angew. Chem. 2014, 126, 2226; i) W. Zhao, Z. Wang, B. Chu, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 1910; Angew. Chem. 2015, 127, 1930.
- [13] CCDC 1442035 (5 j), 1442037 (5 s), and 1442038 (12) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre
- [14] a) G. Dagousset, J. Zhu, G. Masson, J. Am. Chem. Soc. 2011, 133, 14804;
 b) T. Hashimoto, H. Nakatsu, Y. Takiguchi, K. Maruoka, J. Am. Chem. Soc. 2013, 135, 16010.
- [15] M. J. Burk, J. E. Feaster, J. Am. Chem. Soc. 1992, 114, 6266.
- [16] a) G. B. Rowland, H. Zhang, E. B. Rowland, S. Chennamadhavuni, Y. Wang, J. C. Antilla, J. Am. Chem. Soc. 2005, 127, 15696; b) X. Cheng, S. Vellalath, R. Goddard, B. List, J. Am. Chem. Soc. 2008, 130, 15786; c) M. Rueping, A. P. Antonchick, E. Sugiono, K. Grenader, Angew. Chem. Int. Ed. 2009, 48, 908; Angew. Chem. 2009, 121, 925.
- [17] Synthesis of 1,3-diamines based on enamides/enecarbamates, see: a) R. Matsubara, Y. Nakamura, S. Kobayashi, Angew. Chem. Int. Ed. 2004, 43, 1679; Angew. Chem. 2004, 116, 1711; b) M. Terada, K. Machioka, K. Sorimachi, Angew. Chem. Int. Ed. 2006, 45, 2254; Angew. Chem. 2006, 118,

www.chemeurj.org

2312; c) G. Dagousset, F. Drouet, G. Masson, J. Zhu, Org. Lett. 2009, 11, 5546.

- [18] C. Cuevas, A. Francesch, Nat. Prod. Rep. 2009, 26, 322.
- [19] a) T. J. Ward, J. F. White, N. Lattimer, K. F. Rhodes, S. Sharma, J. F. Waterfall, J. Med. Chem. 1988, 31, 1421; b) P. Mattei, M. Boehringer, P. Di Giorgio, H. Fischer, M. Hennig, J. Huwyler, B. Koçer, B. Kuhn, B. M. Loeffler, A.

MacDonald, R. Narquizian, E. Rauber, E. Sebokova, U. Sprecher, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 1109.

Received: April 4, 2016 Published online on May 2, 2016