Facile Atom-Economic Synthesis of Ammonium Diselenophosphinates via Three-Component Reaction of Secondary Phosphines, Elemental Selenium, and Ammonia

Alexander V. Artem'ev, Svetlana F. Malysheva, Nina K. Gusarova, Nataliya A. Belogorlova, Boris A. Trofimov* A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation

Fax +7(3952)419346; E-mail: boris_trofimov@irioch.irk.ru Received 25 February 2010; revised 9 March 2010

Abstract: The three-component reaction between secondary phosphines, R_2PH [R = Ph(CH₂)₂, PhCHMeCH₂, PhCH₂CHMe, 4-*t*-BuC₆H₄(CH₂)₂, 4-MeOC₆H₄(CH₂)₂, 2-furyl(CH₂)₂, 4-py-ridyl(CH₂)₂, 6-Me-3-pyridyl(CH₂)₂, Ph], elemental selenium, and ammonia proceeds under mild conditions (EtOH–H₂O, 53–55 °C or EtOH, r.t., 10 min) without the formation of byproducts to give the first representatives of ammonium diselenophosphinates in high yields (up to 96%).

Key words: secondary phosphines, elemental selenium, ammonia, three-component reaction, diselenophosphinates, ammonium salts, phosphinodiselenoic acid

At present, only salts of alkali metals [M(Se₂PR₂)] $(M = Li, {}^{1} Na, {}^{2} K, {}^{3,4} Li-Cs^{5})$ and alkylammonium $[(alkyl)_n NH_{4-n}(Se_2 PR_2)]$ (n = 3,⁶ 1–3⁷) are known as the starting source for diselenophosphinate anions. The latter represent convenient intermediates for the synthesis of heavy metal diselenophosphinates, which are intensively used as single-source precursors (SSPs) for the preparation of nano-sized metal phosphides or selenides (Zn, Cd, Ni, Co, Ag, In, Eu, etc.) possessing unique magneto-optical, electrical, and other properties.⁸ For example, nickel phosphides (Ni₂P and Ni₁₂P₅) or nickel selenide (NiSe) nanoparticles were prepared from nickel(II) dialkyldiselenophosphinates, [Ni(Se₂PR₂)₂], by thermolysis in trioctylphosphine as a coordinating solvent.⁹ Silver diselenophosphinate, [Ag(Se₂Pi-Pr₂)], was employed as a SSP to obtain silver selenide (Ag₂Se) nanofilms via aerosol-assisted chemical vapor deposition.¹⁰ Europium diselenophosphinate, [Eu(Se₂PPh₂)₃], was used for the synthesis of europium selenide (EuSe) nanocrystals, the starting block for the design of novel remarkable magneto-optical nanomaterials.³ Nanorods of zinc selenide (ZnSe) exhibiting semiconductive properties were synthesized from zinc diselenophosphinate, $[Zn(Se_2Pi-Pr_2)_2]$.⁶

In addition, the diselenophosphinates of alkali metals and alkylammoniums are ligands for metal complexes,¹¹ promising extractants of heavy, rare, and transuranium elements,¹² potential biologically active compounds,¹³ as well as the building blocks for organic and elemento-organic synthesis.¹⁴ For instance, alkylation of diseleno-

phosphinates represents a facile route to the corresponding *Se*-esters of diselenophosphinates^{14a} [R¹₂P(Se)SeR²], showing the properties of efficient reversible addition fragmentation transfer polymerization (RAFT) agents.¹⁵

At the same time, the data on ammonium salts of disele-[phosphinodiselenoic nophosphinic acids acids. $NH_4(Se_2PR_2)$] are absent in literature. One can expect that ammonium diselenophosphinates would be more convenient reagents compared to alkylammonium or alkali metals salts. For example, ammonium diselenophosphinates might be employed as efficient synthetic equivalents of corresponding diselenophosphinic the acids [R₂P(Se)SeH], because the gaseous ammonia evolved (unlike amines or alkali metal hydroxides) is readily removed from the reaction mixture.

Here, we report an atom-economic synthesis of the first representatives of ammonium diselenophosphinates via the three-component reaction of secondary phosphines with elemental selenium and ammonia.

The initial secondary phosphines are readily available from the reaction of red phosphorus and arylethenes or hetarylethenes (styrenes,¹⁶ vinylpyridines,¹⁷ or 2-vinyl-furan^{16a}) in one preparative step.

As our experiments have showed, secondary phosphines **1–9** react readily with elemental selenium and aqueous ammonia solution (EtOH–H₂O, 53–55 °C, 10 min, Method A) or with liquid ammonia (EtOH, r.t., 10 min, Method B) to afford ammonium diselenophosphinates **10a–i** in high yields (76–96%) (Table 1).

The reaction involves no formation of byproducts and, hence, is completely atom-economic and 'green' (ethanol, a nontoxic recoverable solvent, is used).

The tentative mechanism of the formation of diselenophosphinates can be presented as follows (Scheme 1). In the first stage (1), the secondary phosphine **A** reacts with one equivalent of elemental selenium to give secondary phosphine selenide **B**. The latter is deprotonated by ammonia to afford *P*,*Se*-ambident selenophosphinite anion **C** (stage 2), which further reacts with second equivalent of elemental selenium to provide the diselenophosphinate anion **D** (stage 3).

The synthesized salts **10a–i** are powders, stable under an argon blanket, and well soluble in organic solvents (alco-

SYNTHESIS 2010, No. 11, pp 1777–1780 Advanced online publication: 12.04.2010 DOI: 10.1055/s-0029-1218729; Art ID: Z04610SS © Georg Thieme Verlag Stuttgart · New York

 Table 1
 Synthesis of Ammonium Diselenophosphinates from Secondary Phosphines, Elemental Selenium, and Ammonia^a

Entry Phosphine R Method^b Product Yield^c (%) A 94 10a 1 1 В 96 87 Α 2 2 10b в 85 3 3 А 10c 76 4 4 В 10d 88 A 89 5 10e 5 В 88 6 6 A 10f 95 А 93 7 7 10g В 95 92 A 8 8 10h В 92 94 A 9 10i g в 89

^a The ratio of phosphine 1–9/Se/NH₃ was 1:2:1.6.

 $^{\rm b}$ Method A: 25% aq NH $_3$ soln, EtOH–H $_2$ O, 53–55 °C; Method B: liquid NH $_3$, EtOH, r.t.

^c All yields refer to isolated products.

Scheme 1 Probable mechanism of formation of ammonium diselenophosphinates

hols, dioxane, THF, DMSO). In addition, these salts can be easily prepared as crystals by recrystallization from ethanol, diethyl ether, or hexane.

The structures of compounds **10a–i** were identified by multinuclear (¹H, ¹³C, ³¹P, and ⁷⁷Se) NMR and their composition was confirmed by elemental analysis data. Equivalency of selenium atoms in salts **10a–i** follows from ⁷⁷Se and ³¹P NMR data. For example, in the ⁷⁷Se NMR spectra, a doublet (¹ $J_{PSe} = 564-640$ Hz) is present; in the ³¹P NMR spectra, a singlet with one typical satellite pair is observed (¹ $J_{PSe} = 564-640$ Hz). The ¹ J_{PSe} value (564–640 Hz) is intermediate between the coupling constant values for P–Se and P=Se moieties (200–600 and 800–1200 Hz, respectively¹⁸), thus corresponds to the 1.5 order of the phosphorus–selenium bond.

In summary, a novel three-component reaction between secondary phosphines, elemental selenium, and ammonia affords cleanly the corresponding ammonium salts of diselenophosphinic acids (a new family of diselenophosphinates) in high yields. The generality and preparative efficiency of the atom-economic ('green') method developed has been demonstrated by the synthesis of ammonium salts of diselenophosphinic acids bearing aralkyl-, hetaralkyl-, and aryl substituents. The salts synthesized are promising intermediates in the production of conducting nanomaterials and SSPs of semiconducting thin films and precursors for the design of bioactive products, as well as building blocks for diverse phosphorus–selenium organic compounds.

All steps of the experiment were carried out under a dry inert atmosphere (argon). Brand EtOH was used in the reaction as a solvent without additional purification. Secondary phosphines **1–8** were prepared from styrene,^{16a} α -methylstyrene,^{16a} β -methylstyrene, 4*tert*-butylstyrene,^{16b} 4-methoxystyrene, 4-vinylpyridine,¹⁷ 2-methyl-5-vinylpyridine,¹⁷ or 2-vinylfuran^{16a} and red phosphorus as described in the literature. Diphenylphosphine (**9**) was employed as commercial product (Aldrich, 2009). The ¹H, ¹³C, ³¹P, and ⁷⁷Se NMR spectra were recorded on Bruker DPX 400 and Bruker AV-400 spectrometers (400.13, 100.61, 161.98, and 76.31 MHz, respectively) and referenced to H₃PO₄ (³¹P NMR) and Me₂Se (⁷⁷Se NMR). IR spectra were run on a Bruker IFS 25 instrument. Melting points were measured on a Kofler micro hot stage apparatus.

Ammonium Diselenophosphinates 10a–c,e–i; General Procedure (Method A)

To a soln of the secondary phosphine **1–3**, **5–9** (1.0 mmol) in EtOH (10 mL), 25% aq NH₃ soln (~0.12 mL, 1.6 mmol) and amorphous grey selenium (0.158 g, 2.0 mmol) were consecutively added at r.t. under argon. The suspension was vigorously stirred at 53–55 °C until the selenium had dissolved completely (~10 min). The colorless transparent soln formed was filtered, EtOH and H₂O were removed under reduced pressure, and the residue was ground in hexane (10 mL). The latter was decanted, the white powder formed was washed with hexane (10 mL) and dried in vacuo (35–40 °C/1.33 mbar) to afford the corresponding salt **10a–c,e–i**.

Ammonium Diselenophosphinates 10a,b,d,e,g--i; General Procedure (Method B)

To a soln of the secondary phosphine 1, 2, 4, 5, 7-9 (1.0 mmol) in EtOH (10 mL), liquid NH₃ (~0.04 mL, 1.6 mmol) and amorphous grey selenium (0.158 g, 2.0 mmol) were consecutively added at r.t.

Synthesis 2010, No. 11, 1777-1780 © Thieme Stuttgart · New York

under argon. The suspension was vigorously stirred at r.t. until the selenium had dissolved completely (~10 min). The colorless transparent soln formed was filtered, the solvent was removed under reduced pressure, and the residue was ground in hexane (10 mL). The latter was decanted, the white powder formed was washed with hexane (10 mL) and dried in vacuo (35–40 °C/1.33 mbar) to afford the corresponding salt **10a,b,d,e,g–i**.

Ammonium Bis(2-phenylethyl)diselenophosphinate (10a)

White powder; yield: 0.400 g (96%); mp 217–219 °C (Et₂O).

IR (KBr): 3060, 3023, 2944, 2789, 1949, 1876, 1810, 1752, 1633, 1601, 1495, 1453, 1397, 1265, 1208, 1193, 1156, 1137, 1126, 1068, 1028, 1008, 958, 938, 909, 832, 810, 751, 736, 697, 620, 566, 517, 606, 481, 413 cm⁻¹.

¹H NMR (DMSO- d_6): δ = 2.26–2.31 (m, 4 H, CH₂Ph), 2.95–3.02 (m, 4 H, CH₂P), 7.15–7.28 (m, 14 H, Ph, NH₄).

¹³C NMR (DMSO- d_6): δ = 30.58 (d, ² J_{PC} = 1.8 Hz, CH₂Ph), 44.84 (d, ¹ J_{PC} = 36.9 Hz, CH₂P), 125.50 (*p*-C), 128.09 (*o*-C), 128.25 (*m*-C), 142.50 (d, ³ J_{PC} = 16.4 Hz, *ipso*-C).

³¹P NMR (DMSO- d_6): $\delta = 24.29$ (s + d satellites: ¹ $J_{PSe} = 616$ Hz).

⁷⁷Se NMR (DMSO- d_6): $\delta = -36$ (d, ${}^{1}J_{PSe} = 616$ Hz).

Anal. Calcd for $C_{16}H_{22}NPSe_2$: C, 46.06; H, 5.31; N, 3.36; P, 7.42; Se, 37.85. Found: C, 46.10; H, 5.29; N, 3.31; P, 7.31; Se, 37.75.

Ammonium Bis(2-phenylpropyl)diselenophosphinate (10b)

White powder; yield: 0.387 g (87%); mp 154-156 °C (Et₂O).

IR (KBr): 3250, 3080, 3060, 2957, 2867, 2765, 1947, 1880, 1806, 1638, 1601, 1582, 1493, 1451, 1392, 1306, 1283, 1234, 1196, 1182, 1148, 1086, 1075, 1047, 1027, 1005, 995, 911, 847, 829, 763, 747, 732, 699, 584, 562, 544, 532, 488, 462, 404 cm⁻¹.

¹H NMR (DMSO-*d*₆): δ = 1.27–1.35 (m, 6 H, Me), 2.04–2.24 (m, 4 H, CH₂P), 3.36–3.52 (m, 2 H, CH), 7.08–7.22 (m, 14 H, Ph, NH₄).

¹³C NMR (DMSO-*d*₆): δ = 23.98, 24.37 (d, ${}^{3}J_{PC}$ = 5.2 Hz, Me), 37.02, 37.40 (CHPh), 52.22, 52.63 (d, ${}^{1}J_{PC}$ = 34.0, 35.0 Hz, CH₂P), 125.01 (*p*-C), 127.52, 127.54 (*o*-C), 128.30 (*m*-C), 149.48, 149.60 (d, ${}^{3}J_{PC}$ = 12.4 Hz, *ipso*-C).

³¹P NMR (DMSO- d_6): $\delta = 22.94$ (s + d satellites: ¹ $J_{PSe} = 607$ Hz), 24.14 (satellites: ¹ $J_{PSe} = 612$ Hz), the ratio of intensities is 52:48.

⁷⁷Se NMR (DMSO- d_6): δ = -23.2, 23 (d, ¹ J_{PSe} = 607 Hz).

Anal. Calcd for C₁₈H₂₆NPSe₂: C, 48.55; H, 5.89; N, 3.15; P, 6.96; Se, 35.46. Found: C, 48.50; H, 5.77; N, 3.11; P, 6.69; Se, 35.43.

Ammonium Bis(1-methyl-2-phenylethyl)diselenophosphinate (10c)

White powder; yield: 0.338 g (76%); mp 178-181 °C (Et₂O).

IR (KBr): 3251, 3078, 3060, 2955, 2864, 2760, 1947, 1880, 1805, 1635, 1604, 1580, 1493, 1450, 1390, 1306, 1284, 1233, 1195, 1181, 1148, 1085, 1074, 1047, 1028, 1005, 996, 912, 848, 829, 763, 747, 735, 701, 584, 560, 545, 530, 489, 460, 405 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.19 (dd, ³*J*_{HH} = 6.9 Hz, ³*J*_{PH} = 7.8 Hz, 6 H, Me), 2.51–2.57 (m, 2 H, CHP), 3.43–3.53 (m, 4 H, CH₂Ph), 7.16–7.28 (m, 14 H, Ph, NH₄).

¹³C NMR (CDCl₃): δ = 13.22, 14.74 (Me), 36.79 (CH₂h), 39.68, 40.07 (d, ${}^{1}J_{PC}$ = 40.5, 41.5 Hz, CHP), 125.61 (*p*-C), 127.86 (*o*-C), 128.90, 129.02 (*m*-C), 139.46, 139.71 (d, ${}^{3}J_{PC}$ = 15.9, 17.1 Hz, *ipso*-C).

³¹P NMR (EtOH): $\delta = 63.51, 63.85$ (s + d satellites: ¹*J*_{PSe} = 585 Hz), the ratio of intensities is 40:60.

⁷⁷Se NMR (EtOH): $\delta = -160, -158, -156$ (d, ¹ $J_{PSe} = 584$ Hz).

Anal. Calcd for $C_{18}H_{26}NPSe_2$: C, 48.55; H, 5.89; N, 3.15; P, 6.96; Se, 35.46. Found: C, 48.53; H, 5.97; N, 3.08; P, 6.61; Se, 35.27.

Ammonium Bis[2-(4-*tert*-butylphenylethyl]diselenophosphinate (10d)

White powder; yield: 0.466 g (88%); mp 190-194 °C (hexane).

IR (KBr): 3451, 3092, 3055, 3023, 2961, 2903, 2865, 1905, 1793, 1627, 1516, 1495, 1462, 1439, 1393, 1363, 1268, 1202, 1136, 1108, 1067, 1018, 943, 875, 853, 839, 813, 770, 738, 663, 563, 517, 495 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.35 (s, 18 H, Me), 2.59–2.66 (m, 4 H, CH₂P), 3.05–3.11 (m, 4 H, CH₂C₆H₄), 7.13 (s, 4 H, NH₄), 7.23–7.35 (m, 8 H, C₆H₄).

¹³C NMR (CDCl₃): δ = 30.05 (*C*H₂C₆H₄), 31.43 (Me₃C), 34.39 (CMe₃), 43.15 (d, CH₂P, ¹*J*_{PC} = 35.4 Hz), 125.45 (C2_{Ar}, C6_{Ar}), 128.32 (C3_{Ar}, C5_{Ar}), 138.03 (d, ³*J*_{PC} = 16.2 Hz, C1_{Ar}), 148.96 (C4_{Ar}).

³¹P NMR (CDCl₃): δ = 26.75 (s + d satellites: ¹*J*_{PSe} = 640 Hz).

⁷⁷Se NMR (CDCl₃): $\delta = -48$ (d, ¹*J*_{PSe} = 640 Hz).

Anal. Calcd for C₂₄H₃₈NPSe₂: C, 54.44; H, 7.23; N, 2.65; P, 5.85; Se, 29.83. Found: C, 54.31; H, 7.29; N, 2.72; P, 5.80; Se, 29.75.

Ammonium Bis[2-(4-methoxyphenyl)ethyl)]diselenophosphinate (10e)

White powder; yield: 0.425 g (89%); mp 180–184 °C (Et₂O).

IR (KBr): 3285, 3024, 2992, 2834, 2044, 1877, 1649, 1609, 1583, 1511, 1464, 1442, 1396, 1318, 1299, 1265, 1244, 1196, 1176, 1128, 1026, 951, 937, 876, 848, 812, 774, 736, 723, 709, 691, 638, 548, 520, 502, 484, 454, 421, 404 cm⁻¹.

¹H NMR (DMSO- d_6): δ = 2.19–2.26 (m, 4 H, CH₂P), 2.86–2.93 (m, 4 H, CH₂C₆H₄), 3.70 (s, 6 H, OMe), 6.81–7.11 (m, 12 H, C₆H₄, NH₄).

¹³C NMR (DMSO-*d*₆): δ = 30.28 (CH₂C₆H₄), 45.60 (d, ¹*J*_{PC} = 36.2 Hz, CH₂P), 55.55 (OMe), 114.31 (C2_{Ar}, C6_{Ar}), 129.60 (C3_{Ar}, C5_{Ar}), 134.89 (d, ³*J*_{PC} = 16.6 Hz, C1_{Ar}), 157.86 (C4_{Ar}).

³¹P NMR (DMSO- d_6): $\delta = 24.04$ (s + d satellites: ¹ $J_{PSe} = 608$ Hz).

⁷⁷Se NMR (DMSO- d_6): $\delta = -35$ (d, ${}^{1}J_{PSe} = 608$ Hz).

Anal. Calcd for $C_{18}H_{26}NO_2PSe_2$: C, 45.30; H, 5.49; N, 2.93; P, 6.49; Se, 33.09. Found: C, 45.15; H, 5.54; N, 2.90; P, 6.44; Se, 32.98.

Ammonium Bis[2-(4-pyridyl)ethyl]diselenophosphinate (10f) Yellow powder; yield: 0.400 g (95%); mp >200 °C (dec.).

IR (KBr): 3452, 2991, 2893, 2610, 2225, 2152, 2111, 1923, 1709, 1675, 1609, 1557, 1503, 1456, 1452, 1425, 1395, 1316, 1282, 1246, 1222, 1212, 1198, 1189, 1140, 1093, 1071, 1030, 1007, 948, 936, 880, 831, 802, 763, 748, 736, 703, 665, 585, 572, 519, 482, 423 cm⁻¹.

¹H NMR (DMSO-*d*₆): δ = 2.27-2.34 (m, 4 H, CH₂P), 2.99–3.05 (m, 4 H, CH₂Py), 7.08 (s, 4 H, NH₄), 7.25 (d, 4 H, Py), 8.42 (d, 4 H, Py).

¹³C NMR (DMSO- d_6): δ = 30.54 (CH₂Py), 43.94 (d, ¹ J_{PC} = 37.5 Hz, CH₂P), 124.27, 149.79 (Py), 152.12 (d, ³ J_{PC} = 16.7 Hz, Py).

³¹P NMR (DMSO- d_6): $\delta = 24.20$ (s + d satellites: ¹ $J_{PSe} = 616$ Hz).

⁷⁷Se NMR (DMSO- d_6): $\delta = -51$ (d, ${}^{1}J_{PSe} = 616$ Hz).

Anal. Calcd for $C_{14}H_{20}N_3PSe_2$: C, 40.11; H, 4.81; N, 10.02; P, 7.39; Se, 37.67. Found: C, 40.04; H, 4.86; N, 10.11; P, 7.13; Se, 37.49.

Ammonium Bis[2-(6-methyl-3-pyridyl)ethyl]diselenophosphinate (10g)

Yellowish powder; yield: 0.425 g (95%); mp 178-180 °C (Et₂O).

IR (KBr): 3450, 3001, 2920, 2861, 2115, 1955, 1890, 1678, 1657, 1639, 1604, 1569, 1495, 1473, 1441, 1393, 1325, 1298, 1278, 1246, 1207, 1189, 1171, 1139, 1113, 1094, 1037, 1011, 979, 950, 916, 856, 831, 790, 775, 741, 729, 717, 672, 652, 826, 543, 519, 512, 501, 484, 417 cm⁻¹.

¹H NMR (D₂O): δ = 2.12–2.19 (m, 10 H, CH₂P, Me), 2.62–2.68 (m, 4 H, CH₂Py), 6.87 (d, 2 H, Py), 7.26 (d, 2 H, Py), 7.93 (s, 2 H, Py).

¹³C NMR (D₂O): δ = 22.14 (Me), 27.31 (CH₂Py), 42.22 (d, ¹J_{PC} = 35.9 Hz, CH₂P), 123.88 (Py), 134.13 (d, ³J_{PC} = 15.8 Hz, Py), 137.95, 147.09, 155.24 (Py).

³¹P NMR (D₂O): δ = 26.36 (s + d satellites: ¹J_{PSe} = 564 Hz).

⁷⁷Se NMR (D₂O): $\delta = -63$ (d, ¹J_{PSe} = 564 Hz).

Anal. Calcd for $C_{16}H_{24}N_3PSe_2$: C, 42.96; H, 5.41; N, 9.39; P, 6.92; Se, 35.31. Found: C, 42.93; H, 5.34; N, 9.21; P, 6.73; Se, 35.19.

Ammonium Bis[2-(2-furyl)ethyl]diselenophosphinate (10h) White powder; yield: 0.365 g (92%); mp 147–150 °C (Et₂O).

IR (KBr): 3288, 3106, 3058, 2933, 2898, 2759, 1716, 1643, 1597, 1505, 1435, 1384, 1327, 1276, 1225, 1204, 1195, 1170, 1143, 1122, 1108, 1069, 1031, 1007, 964, 947, 936, 914, 903, 883, 815, 790, 778, 725, 677, 641, 600, 492, 418, 402 cm⁻¹.

¹H NMR (DMSO- d_6): δ = 2.24–2.31 (m, 4 H, CH₂P), 2.97–3.03 (m, 4 H, CH₂Fur), 6.08–6.31, 7.47 (m, 6 H, H3_{furyl}, H4_{furyl}, H5_{furyl}), 7.13 (s, 4 H, NH₄).

¹³C NMR (DMSO- d_6): $\delta = 23.26$ (CH₂furyl), 41.02 (d, ¹ $J_{PC} = 38.0$ Hz, CH₂P), 104.73 (C3_{furyl}), 110.30 (C4_{furyl}), 141.11 (C5_{furyl}), 155.50 (d, ³ $J_{PC} = 20.2$ Hz, C2_{furyl}).

³¹P NMR (DMSO- d_6): $\delta = 23.01$ (s + d satellites: ¹ $J_{PSe} = 607$ Hz).

⁷⁷Se NMR (DMSO- d_6): $\delta = -42$ (d, ${}^{1}J_{PSe} = 607$ Hz).

Anal. Calcd for C₁₂H₁₈NO₂PSe₂: C, 36.29; H, 4.57; N, 3.53; P, 7.80; Se, 39.76. Found: C, 36.32; H, 4.51; N, 3.60; P, 7.68; Se, 39.85.

Ammonium Diphenyldiselenophosphinate (10i)

White powder; yield: 0.340 g (94%); mp 201–203 °C (Et₂O).

IR (KBr): 3048, 2930, 2787, 1958, 1919, 1895, 1816, 1770, 1633, 1570, 1476, 1433, 1395, 1373, 1333, 1305, 1178, 1156, 1127, 1089, 1068, 1024, 997, 973, 923, 849, 742, 689, 618, 536, 516, 472, 444, 428 cm⁻¹.

¹H NMR (DMSO- d_6): δ = 7.13 (s, 4 H, NH₄), 7.21–7.23 (m, 2 H, Ph), 7.25–7.29 (m, 4 H, Ph), 8.01–8.06 (m, 4 H, Ph).

¹³C NMR (DMSO- d_6): δ = 126.66 (d, ² J_{PC} = 11.5 Hz, *o*-C), 128.28 (d, ⁴ J_{PC} = 2.9 Hz, *p*-C), 130.72 (d, ³ J_{PC} = 11.0 Hz, *m*-C), 143.30 (d, ¹ J_{PC} = 59.3 Hz, *ipso*-C).

³¹P NMR (DMSO- d_6): $\delta = 23.64$ (s + d satellites: ¹ $J_{PSe} = 631$ Hz).

⁷⁷Se NMR (DMSO- d_6): δ = 15 (d, ¹ J_{PSe} = 631 Hz).

Anal. Calcd for C₁₂H₁₄NPSe₂: C, 39.91; H, 3.91; N, 3.88; P, 8.58; Se, 43.73. Found: C, 39.84; H, 3.96; N, 3.71; P, 8.33; Se, 43.75.

Acknowledgment

Financial support from the Russian Foundation for Basic Research (Grant no. 08-03-00251) is gratefully acknowledged.

References

(1) Davies, R. P.; Martinelli, M. G. Inorg. Chem. 2002, 41, 348.

- (2) (a) Kuchen, W.; Metten, J.; Judat, A. Chem. Ber. 1964, 97, 2306. (b) Kuchen, W.; Knop, B. Angew. Chem., Int. Ed. Engl. 1965, 4, 244. (c) Kuchen, W.; Hertel, H. Angew. Chem., Int. Ed. Engl. 1969, 8, 89.
- (3) (a) Hasegawa, Y.; Adachi, T.; Tanaka, A.; Afzaal, M.;
 O'Brien, P.; Doi, T.; Hinatsu, Y.; Fujita, K.; Tanaka, K.;
 Kawai, T. J. Am. Chem. Soc. 2008, 130, 5710. (b) Tanaka,
 A.; Adachi, T.; Hasegawa, Y.; Kawai, T. J. Alloys Compd.
 2009, 488, 538. (c) Kawai, T.; Hasegawa, Y.; Adachi, T. US 2009,015,919, 2009.
- (4) Davies, R. P.; Francis, C. V.; Jurd, A. P. S.; Martinelli, M. G.; White, A. J. P.; Williams, D. J. *Inorg. Chem.* 2004, 43, 4802..
- (5) Trofimov, B. A.; Artem'ev, A. V.; Malysheva, S. F.; Gusarova, N. K. J. Organomet. Chem. 2009, 694, 4116.
- (6) Nguyen, C. Q.; Afzaal, M.; Malik, M. A.; Helliwell, M.; Raftery, J.; O'Brien, P. J. Organomet. Chem. 2007, 692, 2669.
- (7) (a) Trofimov, B. A.; Artem'ev, A. V.; Gusarova, N. K.; Malysheva, S. F.; Fedorov, S. V.; Kazheva, O. N.; Alexandrov, G. G.; Dyachenko, O. A. *Synthesis* 2009, 3332.
 (b) Trofimov, B. A.; Artem'ev, A. V.; Malysheva, S. F.; Gusarova, N. K. *Dokl. Chem. (Engl. Transl.)* 2009, 428, 230.
- (8) (a) Afzaal, M.; O'Brien, P. J. Mater. Chem. 2006, 16, 1597.
 (b) Afzaal, M.; Malik, M. A.; O'Brien, P. New J. Chem. 2007, 31, 2029. (c) Fan, D.; Afzaal, M.; Mallik, M. A.; Nguyen, C. Q.; O'Brien, P.; Thomas, P. J. Coord. Chem. Rev. 2007, 251, 1878. (d) Jie, G.-F.; Liu, P.; Zhang, S.-S. Chem. Commun. 2010, 46, 1323. (e) Lesnyak, V.; Dubavik, A.; Plotnikov, A.; Gaponik, N.; Eychmüller, A. Chem. Commun. 2010, 46, 886. (f) Zhou, Y.; Riehle, F. S.; Yuan, Y.; Schleiermacher, H.-F.; Niggemann, M.; Urban, G. A.; Krüger, M. Appl. Phys. Lett. 2010, 96, 013304.
- (9) Maneeprakorn, W.; Nguyen, C. Q.; Malik, M. A.; O'Brien, P.; Raftery, J. *Dalton Trans.* **2009**, 2103.
- (10) Panneerselvam, A.; Nguyen, C. Q.; Malik, M. A.; O'Brien, P.; Raftery, J. J. Mater. Chem. 2009, 19, 419.
- (11) Lobana, T. S.; Wang, J.-C.; Liu, C. W. Coord. Chem. Rev. 2007, 251, 91.
- (12) (a) Belova, V. V.; Egorova, N. S.; Kholkin, A. I.; Voshkin, A. A. *China Acad J.* 2005, 146. (b) Voshkin, A. A.; Kostanian, A. E.; Belova, V. V.; Egorova, N. S.; Kholkin, A. I. *China Acad. J.* 2005, 1473. (c) Egorova, N. S.; Belova, V. V.; Voshkin, A. A.; Zhilov, V. I.; Kholkin, A. I. *Russ. J. Inorg. Chem.* 2005, *50*, 1902.
- (13) Matolcsy, G.; Nadasy, M.; Andriska, V. *Pesticide Chemistry*; Elsevier: Budapest, **1988**.
- (14) (a) Kimura, T.; Murai, T. J. Org. Chem. 2005, 70, 952.
 (b) Murai, T.; Kimura, T. Curr. Org. Chem. 2006, 10, 1963.
- (15) Moon, J.; Nam, H.; Kim, S.; Ryu, J.; Han, C.; Lee, C.; Lee, S. *Tetrahedron Lett.* **2008**, *49*, 5137.
- (16) (a) Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Gusarova, N. K. *Tetrahedron Lett.* 1994, *35*, 7647. (b) Gusarova, N. K.; Malysheva, S. F.; Kuimov, V. A.; Belogorlova, N. A.; Mikhailenko, V. L.; Trofimov, B. A. *Mendeleev Commun.* 2008, *18*, 260.
- (17) Gusarova, N. K.; Trofimov, B. A.; Malysheva, S. F.; Shaukhudinova, S. I.; Belogorlova, N. A.; Arbuzova, S. N.; Nepomnyashchikh, K. V.; Dmitriev, V. I. *Russ. J. Gen. Chem.* **1997**, 67, 65.
- (18) Duddeck, H. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M.; Harris, R. K., Eds.; Wiley: New York, **1996**, 4623.