Anal. Calcd. for $C_{32}H_{44}$: C, 89.71; H, 10.29. Found: C, 89.10; H, 10.63.

Nitration A.—The nitration of III was carried out in a chloroform solution as described above. A solid was obtained melting at 150-153°. After two crystallizations from ethanol-chloroform solution the melting point of the nitroderivative VI was 162-163°.

Anal. Calcd. for $C_{26}H_{33}N_2O_4$: C, 70.39; H, 7.55; N, 6.40. Found: C, 70.68; H, 7.37; N, 6.50.

Nitration B.—The hydrocarbon III was nitrated with a solution consisting of 2 vol. of 96% sulfuric acid and 1 vol. of 72% nitric acid. A tetranitroderivative was obtained melting at 251–252°, which was identical with compound V.

Anal. Calcd. for C₂₀H₂₀N₄O₈: C, 54.05; H, 4.50; N, 12.61. Found: C, 54.69; H, 4.71; N, 12.31.

Acknowledgment.—We are indebted to Patricia Craig and Nelda Mold for the microanalyses.

Summary

Isopropyl-p-cymene and cyclohexyl-p-cymene reacted with 3-methylcyclohexene in the presence

of hydrogen fluoride as a catalyst. Hydrogen transfer was the main reaction; the aromatic hydrocarbons acted as a hydrogen donor and methylcyclohexene as a hydrogen acceptor. The hydrogen transfer amounted to over 60 and 40%, respectively, based on methylcyclohexene charged.

The products obtained from the respective aromatic hydrocarbons through a hydrogen transfer were: 1,3,3,6-tetramethyl-5-isopropyl-1-(4-methyl-3-isopropylphenyl)-indan and 1,3,3,6-tetramethyl-5-cyclohexyl-1-(4-methyl-3-cyclohexyl-phenyl)-indan.

The structure of these compounds was proven by nitration and conversion to known nitro derivatives.

Part of the substituted p-cymene apparently reacted with methylcyclohexene to form the expected cycloalkylation product.

EVANSTON, ILLINOIS

RECEIVED MARCH 22, 1948

[CONTRIBUTION FROM THE RESEARCH LABORATORIES OF THE UPJOHN COMPANY]

Antispasmodics. I. Pyrrolidylalkyl Esters of Disubstituted Acetic Acids

By H. G. Kolloff, James H. Hunter, E. H. Woodruff and Robert Bruce Moffett

In a search for new compounds which might have desirable spasmolytic activity, we have prepared a series of esters of β -(1-pyrrolidyl)-ethanol and γ -(1-pyrrolidyl)-propanol.

These esters were prepared by allowing the acid chloride of the requisite acid to react with the appropriate pyrrolidyl alkanol. β -(1-Pyrrolidyl)-ethanol has been reported¹ previously and γ -(1-pyrrolidyl)-propanol was made from pyrrolidine and trimethylene chlorohydrin. The acids used in making these esters were prepared by the methods indicated in Table I. In a few instances new intermediate malonic acids were isolated.

The free basic esters were isolated, characterized, and converted to their hydrochloride salts; when the hydrochlorides proved very difficult to crystallize the acid citrate salts were prepared instead. Some of these basic esters were further characterized by converting them to quaternary salts with various alkyl halides.

Preliminary pharmacological assays by Dr. Milton J. Vander Brook of our Department of Pharmacology indicate that the salts of β -(1-pyrrolidyl)-ethyl esters of phenyl- Δ^2 -cyclopentenyl-, phenyl- Δ^2 -cyclohexenyl-, phenylcyclohexyl-, cyclopentyl-n-propyl-, cyclopentyl-n-butyl- and Δ^2 -cyclopentenyl- Δ^2 -cyclohexenyl-acetic acids, all have antispasmodic activity, of the order of one-eighth or better than that of atropine sulfate, when tested on isolated rabbit intestine stimulated with acetylcholine chloride. The corresponding γ -(1-pyrrolidyl)-propyl esters were less active. Further pharmacological investi-

(1) v. Braun, Braunsdorf and Räth, Ber., 55, 1666 (1922).

gation of these compounds is in progress, and the results will be published elsewhere.

Experimental^{2,3}

 γ -(1-Pyrrolidyl)-propanol.—To a hot solution of 507 g. of sodium hydroxide in 457 ml. of water was added 605 g. (8.5 moles) of pyrrolidine with stirring. To this was slowly added 1 kg. (10.6 moles) of trimethylene chlorohydrin. When the temperature had risen to 100° the mixture was allowed to cool to approximately 70°. After stirring for one-half hour and standing overnight the mixture was saturated with sodium hydroxide and extracted with benzene. After removing the solvent the product was distilled; b. p. 98° (18 mm.), n^{25} D 1.4707.

Anal. Calcd. for $C_7H_{15}NO$: N, 10.84. Found: N, 10.43.

Diethyl Phenyl- Δ^2 -cyclohexenylmalonate.—To a solution of 48.4 g. (2.1 moles) of sodium in 800 ml. of absolute alcohol was added 236.3 g. (1 mole) of diethyl phenylmalonate, and then 254 g. (1.05 moles) of 1,2-dibromocyclohexane was slowly added with stirring at reflux temperature. After heating under reflux for six hours the reaction mixture was acidified with acetic acid and most of the solvent was removed by distillation. Water was added, the organic layer was separated, and distilled first from a Claisen flask and then through a 6-inch column packed with 1 /s-inch glass helices. A yield of 174 g. (55%) of nearly colorless liquid, b. p. 126° (0.07 mm.), was obtained; n^{25} 0 1.5169; d^{25} 4 1.0933.

Anal. Calcd. for $C_{19}H_{24}O_4$: C, 72.13; H, 7.64. Found: C, 71.67; H, 7.64.

Phenyl- Δ^2 -cyclohexenylacetic Acid.—A solution of 68 g. (0.215 mole) of diethyl phenyl- Δ^2 -cyclohexenylmalonate and 75 g. of potassium hydroxide in 350 ml. of 95% ethanol was heated under reflux for six hours. Water was added

⁽²⁾ Analyses by Mr. Harold Emerson and Staff of our Microanalytical Laboratory.

⁽³⁾ Melting points are uncorrected.

^{(4) &}quot;Organic Syntheses," Coll. Vol. II, John Wiley and Sons, Inc., New York, N. Y., 1943, p. 288.

TABLE I

O

Pyrrolidyl Alkanol Esters R'

CHCO(CH₂)_nN

Acid used									
R U		Yield			Free base				
_{R′} >снсон	n	from acid, %	°C. B	. р., Мш.	n ²⁵ D	Empirical formula	Nitrogen a Calcd.	nalyses, % Found	
		Pyrrolid	YL ALKA	NOL ESTE	RS				
Diphenylacetic	2	62.3	168	0.08		$C_{20}H_{23}NO_2$			
Diphenylacetic	3	78.7	148	. 01	1.5492^a	$C_{21}H_{25}NO_2$	4.33	4.36	
Phenyl- Δ^2 -cyclohexenylacetic ^b	2	86.3	137	. 07	1.5295	$C_{20}H_{27}NO_2$	4.47	4.61	
Phenyl- Δ^2 -cyclohexenylacetic ^b	3	80.5	139	. 07	1.5260	$C_{21}H_{29}NO_2$	4.28	4.41	
Phenylcyclohexylacetic ^e	2	87.4	125	. 06	1.5204	$C_{20}H_{29}NO_2$	4.44	4.46	
Phenylcyclohexylacetic ^c	3	81.8	145	.06	1.5177	$C_{21}H_{31}NO_2$	4.25	4.16	
Phenyl- Δ ² -cyclopentenylacetic ^{d, ε}	2	65.5	140	.04		$C_{19}H_{25}NO_2$	4.68	4.68^{f}	
Phenyl- Δ^2 -cyclopentenylacetic ^{d, θ}	3	86.8^{g}	129	.04	1.5220	$C_{20}H_{27}NO_2$	4.47	4.61	
Phenylcyclopentylacetic ^h	2	70.0	135	.04		$C_{19}H_{27}NO_2$	4.64	4.50^{i}	
Phenylcyclopentylacetic ^{h, i}	3	93 , $4^{\it g}$	125	. 03	1.5146	$C_{20}H_{29}NO_{2}$	4.44	4.45	
Phenylphenoxyacetic ^k	2	42.5	174	. 125		$C_{20}H_{23}NO_3$			
Δ^2 -Cyclopentenyl- Δ^2 -cyclohexenyl-acetic ^{l}	2	59.4	110	.01	1.5064	$C_{19}H_{29}NO_{2}$	4.62	4.77	
Δ^2 -Cyclopentenyl- Δ^2 -cyclohexenyl-acetic ^{l}	3	66.8	124	.01	1.5043	$C_{20}H_{31}NO_2$	4.41	4.36	
Δ^2 -Cyclopentenyl- <i>n</i> -propylacetic ^d	2	77.4	100	.03	1.4761	$C_{15}H_{27}NO_2$	5.28	5.40	
Δ^2 -Cyclopentenyl- <i>n</i> -propylacetic ^d	3	89.6	120	.05	1.4758	$C_{17}H_{29}NO_{2}$	5.01	5.10	
Cyclopentyl-n-propylacetic ^{l, m}	2	61.0	95	.01	1.4686	$C_{16}H_{29}NO_{2}$	5.24	5.56	
Cyclopentyl-n-propylacetic ^{l, m}	3	82.4	101	.01	1.4690	$C_{17}H_{31}NO_{2}$	4.98	5.11	
Δ^2 -Cyclopentenyl- n -butylacetic ^{d}	2	65.8	100	.02	1.4752	$C_{17}H_{29}NO_{2}$	5.01	5.03	
Δ^2 -Cyclopentenyl- <i>n</i> -butylacetic ^d	3	83.2	99	.005	1.4750	$C_{18}H_{31}NO_{2}$	4.77	5.06	
Cyclopentyl-n-butylacetic ^{l,n}	2	66.1	104	.01	1.4683	$C_{17}H_{31}NO_2$	4.98	5.00	
Cyclopentyl-n-butylacetic ^{l,n}	3	77.2	104	.009	1.4688	$C_{18}H_{83}\mathrm{NO}_2$	4.74	4.87	

a d²¹¸ 4.0756. b This acid and the corresonding malonic ester were mentioned as intermediates by Miescher and Hoffmann (Helv. Chim. Acta, 24, 458 (1941)) but presumably were not isolated, since no physical constants are given. We have prepared and characterized them as described in the experiment part. c This acid has been prepared previously by partial hydrogenation of diphenylacetic acid, benzilic acid or their esters (Miescher and Hoffmann, ibid., and Smith, Alderman and Nadig, This Journal, 67, 272 (1945)) and by alkylation of benzyl cyanide with cyclohexyl bromide followed by hydrolysis (Venus-Danilova and Bol'ahukin, J. Gen. Chem. (U. S. S. R.), 7, 2823 (1937); C. A., 32, 2925 (1938)). In this work we prepared it by the hydrogenation of phenyl Δ²-cyclohexenylacetic acid as described in the experimental part. d Horclois, Chemie and Industrie, Special No., 357-363 (April 1934). Phenyl-Δ²-cyclopentenylacetic acid was obtained in a crystalline state from hexane, m. p. 71-73°. / Calcd.: C, 76.22; H, 8.42. Found: C, 76.55; H, 8.37. Yield based on purified acid chloride. h This acid has been previously prepared (Vasiliu, Dumitrascu and Vulcan, Soc. Chim. Romania Sect. ramâne Stiinte, Bul. chim. pura apl., [2] 3A, 54-60 (1941-1942); C. A., 38, 5493 (1944)) by the alkylation of benzyl cyanide with cyclopentyl bromide, followed by hydrolysis. In this work we have prepared it by the hydrogenation of phenyl-Δ²-cyclopentenylacetic acid by a procedure similar to that described in the experimental part for phenylcyclohexylacetic acid. We also prepared it similarly using Raney nickel in place of platinum oxide. It was distilled (b. p. 105° (0.04 mm.)) and recrystallized from hexane, m. p. 99-101°; yield 91%. Anal. Calcd. for C₁₁H₁₆C₁: C, 76.65; H, 7.90. Found: C, 76.73; H, 7.96. 'Calcd.: C, 75.71; H, 9.03. Found: C, 74.35, 76.48; H, 8.69, 8.64. The acid chloride of this acid was isolated and distilled, yield 90.5%, b. p. 74° (0.1 mm.), n²¹ p. 1.5308. Meyer and Boner, Ann., 220, 51 (1883). Moffett, Hart and Hoehn,

from time to time to dissolve the solid which separated. After removing most of the alcohol by distillation the product was dissolved in water, extracted with ether, and the aqueous layer acidified. The resulting oily acid soon crystallized giving 48.1 g. of the crude substituted acetic acid, m. p. $116-120^{\circ}$. A sample recrystallized from ethyl acetate melted at $120-122^{\circ}$.

Anal. Calcd for $C_{14}H_{16}O_2$: C,77.70; H,7.46; neutral equivalent, 216.3. Found: C,77.50, 77.89; H,7.38, 7.44; neutral equivalent, 216.7.

Phenylcyclohexylacetic Acid.—A solution of 41.3 g. (0.19 mole) of phenyl Δ^2 -cyclohexenylacetic acid in 125 ml. of 95% alcohol was hydrogenated in the presence of 0.2 g.

of platinum oxide catalyst at approximately 3 atmospheres and room temperature. The catalyst was removed by filtration, and concentration and cooling of the solution gave crystals which after recrystallizing from ethanol gave 23.6 g. (56.5%) of acid, m. p. 146.5–147.5°.

Pyrrolidyl Alkanol Esters.—The following is the general procedure used to prepare the esters listed in Table I. A solution of 0.05 mole of the acid in a large excess of thionyl chloride was warmed on a steam-bath until the reaction was complete. The excess thionyl chloride was distilled under diminished pressure; about 25 ml. of dry benzene was added to the residue, and the solvent removed in vacuo in order to remove the last trace of thionyl chloride. In some cases the acid chloride was prepared in larger quan-

			Amine salts							
R	R'	n	Kind of salt	Yield,4 %	М. р., °С.	Solventb	Empirical formula	Analys Calcd.	es, % Found	
Phenyl	Phenyl	2	HC1	75.6	126.5-127.5	EtOAc	C20H24CINO2	C1, 10.25	10.110	
Phenyl	Phenyl	3	HC1	73.2	142.5-143.5	AcEt	C21H25C1NO2	C1, 9.85	9.75	
Phenyl	Δ2-Cyclohexenyl	2	HC1	87.4	132-134	AcEt~EtOAc	C20H28C1NO2	Cl, 10.13	10.08	
Phenyl	Δ2-Cyclohexenyl	2	CH ₂ Br	87.3	127-129	AcEt-EtOAc	C21H40BrNO2	Br, 19.57	19.49	
Phenyl	Δ ² -Cyclohexenyl	2	CH ₂ CH ₂ I	65.4	136-138	MeOH-EtOAc	C22H32INO2	I, 27.04	27.01	
Phenyl	Δ2-Cyclohexenyl	3	HC1	80.0	129-133	EtOAc	C21H80C1NO2	C1, 9.74	9.83	
Phenyl	Cyclohexyl	2	HCl	88.0	129-130	EtOAc	C20HacClNO2	C1, 10.08	9.95	
Phenyl	Cyclohexyl	3	HCl	88.8	123-124.5	EtOAc	C21H32C1NO2	C1, 9.69	9.60	
Phenyi	Δ3-Cyclopentenyl	2	HCl	80.0	106.5-107	EtOAc	C19H26C1NO2	C1, 10.56	10.36^{d}	
Phenyi	Δ2-Cyclopentenyl	2	Citric acid	92.0	96-97	MeOH-EtOAc	C26H32NO3	N, 2.85	2.86	
Phenyl	Δ2-Cyclopentenyl	2	CH ₂ Br ⁶		103.5-105.5	AcEt-EtOAc	C20H28BrNO2	Br, 20.27	19.77	
Phenyl	Δ2-Cyclopentenyl	2	CH ₂ CH ₂ Br ^e		129-131	MeOH-EtOAc	C21H30BrNO2	Br, 19.57	19.76	
Phenyl	Δ2-Cyclopentenyl	2	CH:16		112.5-114.5	MeOH-EtOAc	C20H28INO2	I, 28.79	28.34	
Phenyl	Δ2-Cyclopentenyl	2	CH ₂ CH ₂ I ^e		127.5-129	MeOH-EtOAc	C21H20INO2	C, 55.38	54.95	
								H, 6.64	6.55	
Phenyl	Δ2-Cyclopentenyl	2	CH2=CHCH2Br		117-119	MeOH-EtOAc	C22HauBrNO2	Br, 19.05	18.25	
Phenyl	Δ2-Cyclopentenyl	3	HC1	85.0	117-120	EtOAc	C20H28C1NO2	Cl, 10.13	10.04	
Phenyl	Cyclopentyl	2	HC1	75.0	101-102	EtOAc	C19H28CINO2	Cl, 10.50	10.619	
Phenyl	Cyclopentyl	3	HC1	91.8	130-131.5	EtOAc	C20H20CINO2	Cl, 10.08	10.04	
Phenyl	Phenoxy	2	HC1	51.5	117.5-118	EtOAc	C20H24CINO3	Cl, 9.80	9.56	
									10.02^{g}	
Δ^2 -Cyclopentenyl	Δ^2 -Cyclohexenyl	2	HC1	79.0	105.5-106.5	EtOAc	C19H20ClNO2	C1, 10.43	10.45	
Δ^2 -Cyclopentenyl	Δ^2 -Cyclohexenyl	3	Citric acid	93.5	120.5-122	EtOH-EtOAc	C26H29NO9	N, 2.75	2.78	
Δ2-Cyclopentenyl	n-Propyl	2	HCI	76.0	67-71	EtOAc-Et2O	C16H28C1NO2	Cl, 11.74	11.65	
Δ2-Cyclopentenyl	n-Propyl	3	HCI		83-85	EtOAc-Et ₂ O	C17HmClNO2	Cl, 11.23	11.02	
Cyclopentyl	n-Propyl	2	HC1	71.8	102-104	EtOAc-Et ₂ O	C16H20CINO2	Cl, 11.67	11. 6 0	
Cyclopentyl	n-Propyl	3	HCl	65.0	115.5-116.5	EtOAc-Et ₂ O	C17H22C1NO2	Cl, 11.16	11.20	
Δ^2 -Cyclopentenyl	n-Butyl	2	Citric acid	92.2	88-89	EtOH-EtOAc	C22H27NO2	N, 2.99	2.99	
Δ2-Cyclopentenyl	n-Butyl	3	HC1	53.0	76-78	EtOAc-Et ₂ O	C18H22C1NO2	Cl, 10.75	10.69	
Δ2-Cyclopentenyl	n-Butyl	3	Citric acid	70.0	117-118	EtOH-EtOAc	C24H39NO	N, 2.89	2.96	
Cyclopentyl	n-Butyl	2	HC1	85.7	88-90	EtOAc-Et₂O	C17H32C1NO2	C1, 11.16	11.15	
Cyclopentyl	n-Butyl	3	HCl	90.0	98.5102	EtOAc-Et ₂ O	C18H14CINO2	C1, 10.68	10.77	

^a This yield is the amount of pure recrystallized salt that was obtained from the free base. If the filtrates are reworked the yields are usually nearly quantitative. ^b The abbreviations used are as follows: EtOAc, ethyl acetate; AcEt, methyl ethyl ketone; MeOH, methanol; EtOH, absolute ethanol; Et₂O, absolute ether. ^c Calcd.: C, 69.45; H, 6.99; N, 4.05. Found: C, 69.73; H, 6.72; N, 4.35. ^d Calcd.: C, 67.94; H, 7.80; N, 4.18. Found: C, 68.06; H, 7.42; N, 4.50. ^e Prepared in this Laboratory by Mrs. Margery Rabbers. ^f Calcd.: C, 67.54; H, 8.35; N, 4.14. Found: C, 67.12; H, 8.12; N, 4.36. ^e Calcd.: C, 66.23; H, 6.70; N, 3.87. Found: C, 66.08; H, 6.82; N, 3.85.

tities and distilled. The acid chloride was dissolved in 25 ml. of dry benzene and a benzene solution of 0.06 mole of the appropriate pyrrolidyl alkanol added. The reaction took place immediately and usually generated enough heat to reflux the solvent. In a short time the product separated as an oil or crystalline solid. After standing overnight or heating for a short time on a steam-bath under reflux the mixture was diluted with ether and ice-water containing a few drops of hydrochloric acid. The aqueous layer was separated, washed with a fresh portion of ether, and made basic with cold sodium hydroxide. The oily amino ester was taken up in ether, washed thoroughly with water, and dried over sodium sulfate. After removal of the solvent the product was distilled under reduced pressure. The free bases were colorless or light yellow oils.

Salts of Pyrrolidylalkanol Esters (Table II).—The hydrochlorides were prepared by adding a slight excess of an isopropanol solution of hydrogen chloride to a dilute ether solution of the free base. In most cases the hydrochlorides crystallized either immediately or on standing, and were recrystallized from the solvent mentioned in Table II. In some cases it was necessary to remove the solvent com-

pletely in vacuo, leaving an oily residue which usually crystallized and could be recrystallized from an appropriate solvent. The acid citrate salts were obtained by adding a saturated absolute ethanolic solution of a slight excess of citric acid to a solution of the free base in ethyl acetate.

Quaternary Salts of the Basic Esters.—These salts were prepared by warming a mixture of the free base with the appropriate alkyl halide either with or without ether as a solvent. The crystalline salts were washed with absolute ether and recrystallized from the solvent indicated in Table II.

Summary

Twenty-one new esters of β -(1-pyrrolidyl)-ethanol and γ -(1-pyrrolidyl)-propanol have been prepared, characterized and converted to the salts.

Preliminary pharmacological assays indicate that several of these salts have high antispasmodic activity.

KALAMAZOO, MICHIGAN

RECEIVED JUNE 21, 1948