Cross reactions of cyanoacetic acid derivatives with carbonyl compounds 3.* One-step synthesis of substituted 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromenes**

A. A. Shestopalov, L. A. Rodinovskaya, A. M. Shestopalov, * and V. P. Litvinov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: shchem@dol.ru

Three-component reactions of 4-hydroxycoumarin, carbonyl compounds, and malononitrile or alkyl cyanoacetates in ethanol in the presence of Et_3N as a catalyst give substituted 2-amino-5-oxo-4,5-dihydropyrano[3,2-*c*]chromenes.

Key words: malononitrile, alkyl cyanoacetates, 4-hydroxycoumarin, 2-amino-5-oxo-4,5dihydropyrano[3,2-*c*]chromenes, spiro[indoline-3,4´]pyrano[3,2-*c*]chromenes, cross reactions, 6-amino-2,1´-bis(benzyloxycarbonyl)-5,7,7-tricyanospiro[3,7,8,8a-tetrahydro-1*H*-isoquinoline-8,4´-piperidine].

A key compound in the synthesis (Scheme 1) of warfarin (rodenticide, a blood anticoagulant) is 2-amino-3cyano-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]chromene (3) prepared by heating of 4-hydroxycoumarin 1 with benzylidenemalononitrile 2 in pyridine² or water.³ Acid hydrolysis of substituted pyrano[3,2-c]chromene 3 gives compound 4, which is used to synthesize warfarin 5.²⁻⁶

2-Amino-4-aryl-3-(thiocarbamoyl, alkoxycarbonyl, or cyano)-5-oxo-4,5-dihydropyrano[3,2-*c*]chromenes were

* For Part 2, see Ref. 1.

****** Dedicated to Academician V. I. Minkin on the occasion of his 70th birthday.

also obtained^{4,7} by morpholine-catalyzed reactions of 4-hydroxycoumarin with arylidenecyanothioacetamide, alkyl arylidenecyanoacetates, or arylidenemalononitrile in hot benzene or ethanol. Despite some achievements attained in recent years in the synthesis of compounds of the type **3** with other substituents in position 4, preparation and isolation of unsaturated nitriles **2**, which are analogs of toxic agents CS,⁸ substantially complicated the aforementioned synthesis (see Scheme 1). In some cases, the condensation does not yield the target unsaturated nitrile at all: in the reaction of pyridine-4-carbaldehyde with malononitrile, 1-amino-2,4,4,6,6-pentacyano-3,5di(4-pyridyl)cyclohex-1-ene was obtained instead.⁹ This

Scheme 1

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 968-972, April, 2005.

1066-5285/05/5404-0992 © 2005 Springer Science+Business Media, Inc.

Com- pound	M.p. 1 /°C	Yield (%)	<u>Fou</u> Calo	nd culated	- (%)	Molecular formula
			С	Н	N	
8a	238-240	78	<u>68.32</u>	<u>3.21</u>	<u>13.04</u>	C ₁₈ H ₁₁ N ₃ O ₃
	(decomp.)		68.14	3.49	13.24	
8b	188—189	67	<u>63.87</u>	<u>4.66</u>	<u>7.19</u>	$C_{21}H_{18}N_2O_6$
			63.96	4.60	7.10	
8c	190-192	68	<u>67.41</u>	<u>3.85</u>	<u>8.82</u>	$C_{18}H_{12}N_2O_4$
	(decomp.)		67.50	3.78	8.75	
8d	232-233	90	<u>70.69</u>	<u>4.75</u>	<u>7.39</u>	$C_{22}H_{18}N_2O_4$
			70.58	4.85	7.48	
8e	277 - 229	74	<u>68.39</u>	<u>4.85</u>	<u>6.74</u>	$C_{23}H_{20}N_2O_5$
			68.31	4.98	6.93	
8f	204-206	93	<u>63.32</u>	<u>3.92</u>	<u>9.86</u>	$C_{22}H_{17}N_3O_6$
			63.01	4.09	10.02	
8g	221-222	85	<u>63.24</u>	<u>3.71</u>	<u>3.61</u>	$C_{21}H_{15}F_{2}NO_{5}$
			63.16	3.79	3.51	
20a	>300	92	<u>67.04</u>	<u>2.93</u>	<u>11.38</u>	$C_{20}H_{11}N_{3}O_{4}$
			67.23	3.10	11.76	
20b	>300	89	<u>67.68</u>	<u>3.35</u>	<u>11.07</u>	$C_{21}H_{13}N_3O_4$
			67.92	3.53	11.32	
20c	>300	90	<u>63.73</u>	<u>2.45</u>	<u>10.94</u>	$C_{20}H_{10}FN_{3}O_{4}$
			64.00	2.69	11.20	

 Table 1. Physicochemical characteristics of substituted 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromenes 8 and 20

precludes the synthesis of pyrano[3,2-*c*]chromones containing the 4-pyridyl substituent in position 4.

In further investigations of cross reactions of cyanoacetic acid derivatives with carbonyl compounds^{1,10} with the aim of developing one-step syntheses of functionalized heterocycles, we studied three-component reactions of 4-hydroxycoumarin, cyanoacetic acid derivatives (malononitrile and alkyl cyanoacetates), and carbonyl compounds (aromatic and heterocyclic aldehydes, cyclic aliphatic ketones, or isatin). To obtain potential biologically active compounds, we introduced into this reaction not only heterocyclic aldehydes but also alkoxy- or dialkoxybenzaldehydes, the residues of which are found in many natural physiologically active compounds.⁶

The brief heating of 4-hydroxycoumarin 1 with aldehydes 6 and cyanoacetic acid derivatives 7 in boiling ethanol in the presence of Et₃N as a catalyst gave substituted 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromenes 8a,f in high yields (67-93%). Using this method, we avoided side processes and obtained 4-(4-pyridyl)-, 4-(4-alkoxyphenyl)-, and 4-(3,4-dialkoxyphenyl)pyranochromenes **8a,b,d**—f (Table 1). Such a high regioselectivity is probably associated with the fixed sequence of reaction steps. Apparently, the initial Knoevenagel reaction of aldehyde 6 with cyanoacetic acid derivative 7 gives unsaturated nitrile 9, which, when at the "reaction intersection", enters into the Michael reaction with coumarin anion 10. The resulting Michael adduct 11 undergoes intramolecular cyclization into annelated iminopyran 12. Subsequent tautomeric [1,3]sigmatropic shift gives compounds 8 (Scheme 2).

Under these conditions, the reaction sufficiently rapidly and smoothly affords target chromenes 8 in high yields; no Michael adducts 11 were detected. However, this scheme is confirmed to some degree by isolation of analogous Michael adducts ($Z = CSNH_2$) in the previ-

 $Z = CN (7a, 8a, c-f), COOEt (7b, 8g), COO(CH_2)_2OMe (7c, 8b)$ 6, 8: Ar = 4-Py (a, b), 2-(5-MeC_4H_2O) (c), 4-PrⁱOC_6H_4 (d), 3-MeO-4-PrⁱOC_6H_3 (e), 3-MeO-4-(OCH_2CONH_2)C_6H_3 (f), 2,4-F_2C_6H_3 (g)

Reagents and conditions: *i*. EtOH, Et₃N, Δ , 5 min.

Scheme 3

Reagents and conditions: *i*. EtOH, Et₃N, Δ .

ously studied reactions of 4-hydroxycoumarin with arylidenecyanothioacetamides.⁴

The three-component reaction between coumarin 1, malononitrile 7a, and 1-benzyloxycarbonylpiperidin-4one (13) as the carbonyl compound follows a different pathway. Under analogous conditions (see above), malononitrile 7a reacts with piperidin-4-one 13 to give unsaturated nitrile 14, which dimerizes into spiroheterocycle 15 rather than reacting with coumarin 1. The suggested scheme involves dimerization of unsaturated nitrile 14 into Michael adduct 16, its Thorpe-Ziegler cyclization into spiroheterocycle 17, and final tautomerization into compound 15 through intermediate 18. Thus, coumarin 1 is out the process. Indeed, we obtained compound 15 from malononitrile 7a and ketone 13 in ethanol in the presence of Et₃N (Scheme 3). An analogous dimerization was observed earlier in the reaction of 1-methylpiperidin-4-one with malononitrile.¹⁰ This reaction pathway is probably due to a higher γ -CH acidity of unsaturated nitrile 14 compared to 4-hydroxycoumarin 1.

Our assumption was confirmed by a three-component reaction with isatin **19** (containing no γ -CH acid fragment) as the carbonyl compound, which gives spiro(indo-line-3,4'-pyrano[3,2-c]chromenes) **20** rather than dimerization products from unsaturated nitriles **21** (Scheme 4). The yields of spiro compounds **20** were high (89–92%), regardless of the type of substituent in the benzene ring of isatin **19**.

The pyranochromenes 8 and 20 obtained are air-stable colorless solid powders, which are well soluble in acetone, DMF, and DMSO. The structures of these compounds were confirmed by elemental analysis and IR and ¹H NMR spectroscopy (Tables 1, 2). The IR spectra of pyranochromenes 8 and 20 contain characteristic absorption bands of the enamino nitrile and enamino carbonyl fragments: $\delta(NH_2)$ 1660–1678 cm⁻¹, v(NH₂) 3135-3378 cm⁻¹, v(CN) 2190-2208 cm⁻¹, and v(COOR) 1673–1696 cm⁻¹. An analogous spectral pattern was observed for 2-amino-4H-pyrans containing similar fragments.^{1,9–12} The IR spectra of pyranochromenes 8 and 20 show a peculiar absorption band of the lactone group at 1688–1720 cm⁻¹. The ¹H NMR spectra of pyranochromenes 8 exhibit, apart from signals for protons of the aromatic and chromene fragments, characteristic singlets for the C(4)H and NH₂ protons at δ 4.37 to 4.90 and 7.09 to 7.85, respectively. Signals of the C(4)H group are absent from the spectra of spiroheterocycles 20; instead, signals for the protons of the isatin fragment are present.

In conclusion, it should be noted that the cross reactions studied are based on simultaneous double generation of a nucleophile (4-hydroxycoumarin anion) and an electrophile (unsaturated nitrile) in the reaction mixture. At the "intersection point", the reaction between intermediates can give pyranochromenes 8 and 20 or isoquinoline 15.

19, 21: R = H (a), 7-Me (b), 5-F (c)

Reagents and conditions: *i*. EtOH, Et₃N, Δ , 10 min.

Experimental

Melting points were determined on a Kofler unit. IR spectra were recorded on Specord M-80 and Perkin–Elmer 577 instruments (pellets with KBr, 1/200). ¹H NMR spectra were recorded on a Bruker AC-300 spectrometer (300 MHz) in DMSO-d₆; chemical shifts were referenced to Me₄Si. Elemental analysis was performed with a Perkin–Elmer C,H,N-analyzer. The course of the reactions was monitored and the purity of the compounds obtained was checked by TLC on Silufol UV-254 plates with hexane—acetone (5:3) as an eluent; spots were visualized with the iodine vapor.

2-Amino-5-oxo-4,5-dihydropyrano[3,2-c]chromenes 8 and 20 (general procedure). A stirred mixture of 4-hydroxycoumarin 1 (1.62 g, 10 mmol), carbonyl compound 6 or 19 (10 mmol), a corresponding cyanoacetic acid derivative 7 (11 mmol), and Et_3N (0.5 mL, 0.5 mmol) in anhydrous EtOH (50 mL) was refluxed for 5 to 10 min and allowed to crystallize at 4 °C

Table 2. Spectroscopic characteristics of substituted 2-amino-5-oxo-4,5-dihydropyrano[3,2-c]chromenes 8 and 20

Com-	IR, ν/cm^{-1}				¹ H NMR			
pound	$\delta(NH_2)$	NH ₂	C≡N	С=О	(300 MHz, δ, <i>J</i> /Hz)			
8a	1673	3175, 3280, 3384	2200	1718	4.72 (s, 1 H, C(4)H); 7.25 (d, C(3)H, C(5)H, py, <i>J</i> = 5.6); 7.15 (s, 2 H, NH ₂); 7.36 (d, 1 H, CH, <i>J</i> = 7.8); 7.44 (t, 1 H, CH, <i>J</i> = 7.7); 7.62 (t, 1 H, CH, <i>J</i> = 7.8); 7.96 (d, 1 H, CH, <i>J</i> = 7.7); 8.40 (d, 2 H, C(2)H, C(6)H, py, <i>J</i> = 5.6)			
8b	1668	3190, 3256, 3360	_	1673, 1683	3.25 (s, 3 H, Me); 3.44, 4.09 (both m, 2 H each, CH ₂); 4.73 (s, 1 H, C(4)H); 7.23 (d, 2 H, C(3)H, C(5)H, py, <i>J</i> = 5.5); 7.38 (d, 1 H, CH, <i>J</i> = 7.9); 7.44, 7.65 (both t, 1 H each, CH, <i>J</i> = 7.9); 7.85 (s, 2 H, NH ₂); 7.99 (d, 1 H, CH, <i>J</i> = 7.9); 8.39 (d, 2 H, C(2)H, C(6)H, py, <i>J</i> = 5.5)			
8c	1672	3187, 3288, 3376	2200	1720	2.22 (s, 3 H, Me); 4.53 (s, 1 H, C(4)H); 5.92, 6.08 (both d, 1 H each, CH, furyl, $J = 2.2$); 7.16 (s, 2 H, NH ₂); 7.40 (d, 1 H, CH, $J = 7.9$); 7.42, 7.67 (both t, 1 H each, CH, $J = 7.9$); 7.92 (d, 1 H, CH, $J = 7.9$)			
8d	1672	3185, 3200, 3312	2205	1712	1.28 (s, 6 H, Me ₂ , $J = 5.5$); 4.39 (s, 1 H, C(4)H); 4.53 (m, 1 H, CHO); 6.79 (d, 2 H, CH _{Ph} , $J = 7.7$); 7.09 (s, 2 H, NH ₂); 7.16 (d, 2 H, CH _{Ph} , $J = 7.7$); 7.36 (d, 1 H, CH, $J = 7.8$); 7.41, 7.64 (both m, 1 H each, CH); 7.93 (d, 1 H, CH, $J = 7.9$)			
8e	1668	3192, 2208, 3218, 3312		1708	1.25 (s, 6 H, Me ₂ , $J = 4.9$); 3.76 (s, 3 H, Me); 4.37 (s, 1 H, C(4)H); 4.44 (m, 1 H, CHO); 6.72, 6.78 (both d, 1 H each, CH _{Ph} , $J = 8.0$); 6.85 (s, 1 H, CH _{Ph}); 7.18 (s, 2 H, NH ₂); 7.39 (m, 2 H, CHCH); 7.64 (m, 1 H, CH); 7.91 (d, 1 H, CH, $J = 7.9$)			

(to be continued)

	Tabl	le 2	(continued)	
--	------	------	-------------	--

Com- pound	IR, v/cm^{-1}				¹ H NMR			
	$\delta(NH_2)$	NH_2	C≡N	С=О	(300 MHz, δ, <i>J</i> /Hz)			
8f	1663	3200, 3250, 3320, 3360	2207	1707	3.77 (s, 3 H, Me); 4.37 (s, 2 H, CH ₂); 4.44 (s, 1 H, C(4)H); 6.74, 6.88 (both d, 1 H each, CH _{Ph} , $J = 7.9$); 6.91 (s, 1 H, CH _{Ph}); 7.34 (br.s, 4 H, (NH ₂) ₂); 7.45 (d, 1 H, CH, $J = 8.1$); 7.48, 7.71 (both m, 1 H each, CH); 7.91 (d, 1 H, CH, $J = 8.3$)			
8g	1660	3210, 3312	_	1696, 1702	1.15 (t, 3 H, Me, $J = 7.8$); 4.01 (q, 2 H, CH ₂ , $J = 7.8$); 4.90 (s, 1 H, C(4)H); 6.84 (m, 2 H, CH _{Ph}); 7.37 (d, 1 H, CH, $J = 7.6$); 7.43 (t, 1 H, CH, $J = 7.6$); 7.73 (s, 2 H, NH ₂); 7.76 (t, 1 H, CH, $J = 7.5$); 7.99 (d, 1 H, CH, $J = 7.5$)			
20a	1678	3138,* 3295, 3360	2195	1695, 1724	6.75–7.18 (m, 4 H, (CH) ₄ , isatin); 7.32 (d, 1 H, CH, <i>J</i> = 7.7); 7.42 (m, 1 H, CH); 7.48 (s, 2 H, NH ₂); 7.72 (m, 1 H, CH); 7.95 (d, 1 H, CH, <i>J</i> = 7.4); 10.40 (s, 1 H, NH)			
20b	1672	3140,* 3285, 3357	2192	1695, 1718	2.32 (s, 3 H, Me); 6.72–7.20 (m, 3 H, (CH) ₃ , isatin); 7.28 (d, 1 H, CH, <i>J</i> = 7.6); 7.38 (m, 1 H, CH); 7.44 (s, 2 H, NH ₂); 7.75 (m, 1 H, CH); 7.98 (d, 1 H, CH, <i>J</i> = 7.3); 10.35 (s, 1 H, NH)			
20c	1670	3135,* 3278, 3355	2190	1690, 1715	7.25–7.68 (m, 8 H, CH (isatin), CH (pyranochromene), $J = 7.5$); 10.35 (s, 1 H, NH)			

* Overlap with v(NH) in the isatin fragment.

for 12 h. The precipitate that formed was filtered off, washed with ethanol and hexane, and recrystallized from nitromethane to give compounds 8 and 20 (see Tables 1, 2).

6-Amino-2,1'-bis(benzyloxycarbonyl)-5,7,7-tricyanospiro[3,7,8,8a-tetrahydro-1*H*-isoquinoline-8,4⁻-piperidine] (15). An equimolar mixture of ketone 13 (0.47 g, 2 mmol) and malononitrile 7a (0.13 g, 2 mmol) in anhydrous EtOH (15 mL) was stirred at 50 to 55 °C to homogenization and triethylamine (0.32 mL, 2.3 mmol) was added. The reaction mixture was refluxed for 5 min and allowed to crystallize. The precipitate that formed was filtered off, washed with ethanol and hexane, and recrystallized from nitromethane to give spiro compound 15 (0.78 g, 70%), m.p. 248-250 °C. Found (%): C, 68.16; H, 5.18; N, 14.67. C32H30N6O4. Calculated (%): C, 68.31; H, 5.37; N, 14.94. IR, v/cm⁻¹: 1668 (δ(NH₂)); 1690 (CO); 2223 (CN); 3208, 3346, 3367 (NH₂). ¹H NMR, δ: 1.68 (m, 1 H, C(5')H_{ea}); 1.79 (m, 1 H, C(3') H_{eq}); 2.22 (m, 2 H, C(3') H_{ax} , C(5') H_{ax}); 2.67 (m, 1 H, C(8a)H); 3.08 (m, 1 H, C(1)H_{eq}); 3.36 (m, 2 H, $C(1)H_{ax}$, $C(2')H_{eq}$; 3.76 (m, 2 H, $C(2')H_{ax}$, $C(6')H_{eq}$); 3.95 (m, 1 H, C(6')H_{ax}); 4.39 (m, 2 H, C(3)H₂); 5.08 (m, 4 H, (CH₂)₂); 5.78 (m, 1 H, C(4)H); 7.22 (s, 2 H, NH₂); 7.32 (m, 10 H, Ph₂).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 05-03-32031).

References

1. A. M. Shestopalov, S. G. Zlotin, A. A. Shestopalov, V. Yu. Mortikov, and L. A. Rodinovskaya, *Izv. Akad. Nauk*, Ser. Khim., 2004, 546 [Russ. Chem. Bull., Int. Ed., 2004, 53, 573].

- 2. US Pat. 3 097 213; Ref. Zh., Khim., 1965, 12N257P.
- 3. Jpn Pat. 12 901; Ref. Zh., Khim., 1968, 12N568P.
- 4. Yu. A. Sharanin, M. P. Goncharenko, and V. P. Litvinov, Usp. Khim., 1998, 67, 442 [Russ. Chem. Rev., 1998, 67 (Engl. Transl.)].
- A. M. Shestopalov and Yu. M. Emeliyanova, in Selected Method for Synthesis and Modification of Heterocycles, Ed. V. G. Kartsev, IBS PRESS, Moscow, 2003, 2, 363.
- The Merck Index, Ed. V. J. O'Neil, Merck and Co., Inc., Whitehouse Station, New York, 2001, 1818.
- S. M. A. Mousawi, Y. M. Elkholy, M. A. Mohammad, and M. H. Elnagdi, *Org. Prep. Proc. Int.*, 1999, **31**, 305.
- 8. F. Freeman, Chem. Rev., 1980, 80, 329.
- A. M. Shestopalov, Z. I. Niazimbetova, D. H. Evans, and M. E. Niyazymbetov, *Heterocycles*, 1999, 51, 1101.
- A. M. Shestopalov, Yu. M. Emeliyanova, A. A. Shestopalov, L. A. Rodinovskaya, Z. I. Niazimbetova, and D. H. Evans, *Tetrahedron*, 2003, **59**, 7491.
- A. M. Shestopalov, Yu. M. Emeliyanova, and V. N. Nesterov, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 2079 [*Russ. Chem. Bull.*, *Int. Ed.*, 2002, **51**, 2238].
- A. M. Shestopalov and O. A. Naumov, *Izv. Akad. Nauk, Ser. Khim.*, 2003, 1306 [*Russ. Chem. Bull., Int. Ed.*, 2003, 52, 1380].

Received October 18, 2004