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Abstract. We report herein the first KHMDS-catalyzed 
Michael additions of allylic alcohols to ,-unsaturated 
amides through allylic isomerization. The reaction proceeds 
smoothly in the presence of only 5 mol% of KHMDS to 
afford a variety of 1,5-ketoamides in high yields. 
Mechanistic investigations, including experimental and 
computational studies, reveal that the KHMDS-catalyzed 
in-situ generation of the enolate from the allylic alcohol 
through a tunneling-assisted 1,2-hydride shift is the key to 
the success of this transformation. 

Keywords: allylic alcohols; enolates; Michael addition; 
hydride shift; tunneling 

 

Introduction 

Allylic alcohols are versatile synthetic precursors that 
can participate in a variety of transformations.[1] 
Among them, isomerization is particularly important 
because it provides carbonyl compounds in an atom-
economical manner. Therefore, a variety of catalytic 
systems that enable such transformations have been 
developed, but most use transition-metal catalysts.[2] 
Although the development of transition-metal-free 
base-mediated protocols is highly desirable from the 
viewpoint of green chemistry, they have only been 
studied sporadically, and most require a 
stoichiometric or excess amount of a base.[3] In 2015, 
Kang et al. first reported the NaOtBu/phenanthroline-
catalyzed allylic isomerization under transition-
metal-free conditions;[4a] they also conducted a 
detailed mechanistic study and revealed that the 
reaction proceeds through a radical pathway. The 
base-mediated allylic isomerization is also applicable 
to tandem reactions; i.e., allylic isomerization 
followed by electrophilic trapping of the in-situ 
generated enolate.[5,6] However, this type of reaction 
still requires stoichiometric amounts of base, and a 
catalytic variant remains unexplored.[7] Our 
continuing interest in the transformations of 

unsaturated alcohols[8] prompted us to develop a 
base-catalyzed tandem allylic 
isomerization/electrophilic trapping reaction. As 
outlined in Scheme 1, our working hypothesis for a 
base-catalyzed tandem reaction relies on the use of 
,-unsaturated carbonyl compounds as electrophiles. 
Enolate B, which is generated from alkoxide A 
through allylic isomerization, undergoes Michael 
addition to the ,-unsaturated carbonyl compound 
to form enolate C, which is sufficiently basic to 
smoothly abstract the OH proton of the next substrate 
1, to give the desired Michael adduct and regenerate 
A. Thus, a catalytic amount of a base (M+B–) drives 
the catalytic cycle even though the base itself is not 
regenerated.[9] In this paper, we describe the first 
base-catalyzed tandem allylic isomerization/Michael 
addition reaction under transition-metal-free 
conditions. The mechanism of the allylic 
isomerization process is also discussed based on 
experimental and computational studies. 

 

Scheme 1. Working hypothesis for a base-catalyzed 

tandem allylic-isomerization/Michael-addition sequence. 

Results and Discussion 
 
Initially, we aimed to identify the appropriate base for 
the isomerization of an allylic alcohol to the 
corresponding enolate or homoenolate. To this end, 
allylic alcohol 1a was reacted with various bases for 
1 h and then trapped with benzyl bromide. The 
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product distribution was monitored by 1H NMR 
spectroscopy (Table 1). The use of lithium bases led 
to no observable reaction (entries 1 and 2). When 
sodium bases were used, large amounts of 1a were 
again recovered, while O-benzylated ether 2 and C2-
benzylated ketone 3 were obtained in low yields 
(entries 3 and 4). In contrast, we found that 3 was 
formed in high yields with almost complete 
consumption of 1a when potassium bases were 
employed (entries 5 and 6).[10] In particular, KHMDS 
was effective for the allylic isomerization of 1a to the 
corresponding enolate and its subsequent reaction 
with benzyl bromide. No C3-benzylated ketone 4 was 
observed in any reaction. 

Table 1. Benzylation of allylic alcohol 1a in the presence 

of various bases.[a] 

 

Entry Base 
Yield [%][b] 

1a 2 3 

1 nBuLi >99 0 0 

2 LHMDS 94 0 0 

3 NaH[c] 49 17 17 

4 NaHMDS 77 15 4 

5 KH[c] 0 3 71 

6 KHMDS 1 3 94 
[a] Conditions: 1a (0.2 mmol) and base (0.2 mmol) in THF 

(2 mL) at room temperature for 1 h followed by trapping 

with benzyl bromide (0.24 mmol) for 1 h. [b] Determined 

by 1H NMR analysis. [c] With 1.5 equiv. of base. 

We next explored the feasibility of the working 
hypothesis outlined in Scheme 1, using various ,-
unsaturated carbonyl compounds (Scheme 2). When 
an ,-unsaturated ketone was selected as the 
electrophile, no Michael adduct was observed, and 
only ketone 5 derived from 1a was obtained in 75% 
yield. Ester 6 was formed in 47% yield when the ,-
unsaturated thioester was used; 6 was formed by the 
1,2-addition of the alkoxide of 1a to the thioester 
followed by the thia-Michael addition of KStBu to the 
in-situ-generated ,-unsaturated ester. While the 
reaction of 1a with the ,-unsaturated ester provided 
a 25% yield of the desired Michael adduct 7 for the 
first time, inseparable oxa-Michael adduct 8 was also 
generated. Gratifyingly, the use of ,-unsaturated 
amide 9a delivered Michael adduct 10aa in 92% 
isolated yield without the formation of any side 
products. The high yield and chemoselective 
formation of 10aa is likely due to the lower reactivity 
of 9a,[11] which retards the oxa-Michael addition of 

the alkoxide of 1a and provides an opportunity for 
allylic isomerization. It should be noted that this 
represents the first example of the base-catalyzed C-
addition of an allylic alcohol to an electrophile other 
than a proton. 

 

Scheme 2. The KHMDS-catalyzed tandem allylic-

isomerization/Michael-addition reaction. 

We next investigated the allylic alcohol substrate 
scope (Table 2). Optimization studies revealed that 
the reaction of 1a with 9a was complete in 1.5 h in 
the presence of only 5 mol% of KHMDS.[12] A wide 
range of allylic alcohols 1 underwent successive 
allylic isomerization and Michael addition to 9a, to 
provide the corresponding 1,5-ketoamides 10 in 
good-to-excellent yields. This reaction tolerates a 
variety of functionalities, such as ether, halo, 
trifluoromethyl, cyano, furyl, thienyl, and pyridyl 
groups.[13] Although the reaction of 1q devoid of 
substituent at the 3-position was sluggish, giving 
10qa in only 20% yield,[14] the yield improved to 
88% when the aryl group was changed from phenyl 
to 2-pyridyl, as in 10ra. Methyl-substituted allylic 
alcohol 1s was also a suitable substrate. 
Unfortunately, allylic alcohols bearing an alkyl group 
at the C1 position could not be employed in this 
reaction because such substrates did not undergo the 
allylic isomerization.[15] 

 

 

 

 

 

Table 2. Substrate scope of allylic alcohols 1.[a] 
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[a] Conditions: 1 (0.36 mmol), 9a (0.3 mmol), and KHMDS 

(5 mol%, 0.5 M in toluene) in THF (3 mL) at room 

temperature for 1.5 h. Yields of isolated products are 

shown. [b] With 20 mol% of KHMDS for 2 h. 

We also examined the generality of reactions 
involving ,-unsaturated amides 9 (Table 3), and 
various substituents on the nitrogen atom were 
evaluated. N,N-Dialkylamides reacted well to afford 
the desired products 10ab and 10ac. N,N-diallyl-, 
N,N-dibenzyl-, and N,N-di(p-methoxybenzyl)amides, 
with possible subsequent deprotection in mind, were 
well tolerated and gave the corresponding products 
10ad–10af in high yields. Weinreb-type amide 9g 
and N-arylamide 9h were also suitable substrates. 
,-Unsaturated amides 9i and 9j bearing alkyl or 
aryl substituents at their -positions could also be 
employed in this reaction. 

Table 3. Substrate scope of ,-unsaturated amides 9.[a] 

 

[a] For general reaction conditions, see Table 2. Yields of 

isolated products are shown. [b] With 7.5 mol% of KHMDS. 
[c] With 2.0 equiv. of 1a and 20 mol% of KHMDS. 

The key step in this transformation is the 
isomerization of the allylic alcohol to the 
corresponding enolate. Therefore, to elucidate the 
isomerization mechanism, we performed a series of 
control experiments (Scheme 3). First, 1a was reacted 
with 9a in the presence of (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) to 
investigate if the mechanism is radical-based as 
proposed by Kang and co-workers.[4a] The reaction 
afforded 10aa in 80% yield even in the presence of 
TEMPO. In addition, radical-clock substrate 1t was 
reacted with 9a, which afforded 10ta in 67% yield 
without any formation of ring-opening byproducts. 
These results provide strong evidence against a 
radical mechanism. Because a direct 1,2-proton shift 
is symmetry-forbidden and unlikely to occur,[16,17] we 
believe that the allylic isomerization proceeds via a 
hydride-shift mechanism. We performed a deuterium-
labeling experiment to distinguish between 1,2- and 
1,3-hydride shifts.[3e] When 1a-d was reacted with 10 
mol% of KHMDS, 31% deuterium was incorporated 
at the C2 position in 5-d2, and only 4% was 
incorporated at the C3 position. Because the erosion 
of deuterium content at the C2 position can be 
explained by base-catalyzed D/H exchange,[18,19] this 
result indicates that a 1,2-hydride shift is likely to be 
operative in the allylic-isomerization process. Next, 
we reacted 1a-d with 9a in the presence of 5 mol% 
KHMDS, which furnished a 5.3:1 mixture of 10aa-d 
(26% D) and 11aa-d (99% D). The detection of oxa-
Michael adduct 11aa-d was in sharp contrast to the 
outcome observed with 1a and suggests that the 
incorporation of deuterium significantly retards the 
1,2-hydride-shift process. An alternative pathway that 
involves direct C1–H deprotonation is conceivable 
because the difference between the pKa values of the 
OH and the C1–H in 1a may not be significant in 
organic solvents. To test this hypothesis, 1a-d was 
reacted with a stoichiometric amount of KH. If KH 
directly abstracts the C1–D in 1a-d, the reaction 
should not afford deuterated ketone 5-d because the 
deuterium at the C1 position is lost from the reaction 
system as HD gas. Surprisingly, 76% of the 
deuterium was transferred to the C3 position of 
ketone 5-d3 although no deuterium incorporation at 
the C2 position was observed. A similar reaction 
using KHMDS as the base produced 5-d3 (82% D at 
C3). The fact that deuterium content was well 
preserved during the reaction ruled out a direct C1–H 
deprotonation pathway. An explanation for the 
change in position of the deuteration that is 
dependent on the amount of base is presented as 
follows (Scheme 4): For cases with a catalytic 
amount of a base, homoenolate B is generated from 
alkoxide A through a 1,2-deuteride shift undergoing 
rapid C3-protonation by the OH group of 1a-d, thus 
producing C2-deuterated ketone 5-d2, which is 
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susceptible to base-catalyzed C2–D/H exchange. 
However, when a stoichiometric amount of base is 
used, homoenolate B abstracts the C1–D of alkoxide 
A affording dianion C because there is no OH group 
of 1a-d. Dianion C also abstracts the C1–D of 
alkoxide A to give enolate D and regenerate C. 
Enolate D is converted into C3-deuterated ketone 5-
d3 after aqueous work-up.[20,21] 

 

Scheme 3. Control experiments. 

 

Scheme 4. A plausible mechanism of the base-catalyzed 

isomerization of allylic alcohol 1a-d. 

We turned to kinetics studies to acquire more 
information on this allylic-isomerization process. We 
first reacted 1a with 5 mol% of KHMDS to measure 
rate constant kH1 (Scheme 5). This reaction is 
catalytic; hence the concentration of alkoxide A is 
essentially constant and the same as that of the added 
KHMDS. However, we found that the reaction 
clearly slowed as the reaction proceeded, which is 
probably due to the equilibrium between A, ketone 5, 
1a, and the corresponding enolate, which decreases 
the concentration of A. Accordingly, we performed 
initial-rate kinetics studies to measure kH1. On the 
basis of these experiments,[22] kH1 was determined to 
be 3.33 × 10–3 s–1. We also conducted similar kinetics 
experiments using 1a-d bearing 99% deuterium at the 
1-position and consequently observed a large KIE of 
7.6 (kD1 = 4.39 × 10–4 s–1). These results indicate that 
the 1,2-hydride shift (C–H bond cleavage step) is 
rate-determining and that tunneling[23] is involved in 
this event. 

 

Scheme 5. Kinetics studies for the KHMDS-catalyzed 

isomerizations of allylic alcohols 1a and 1a-d. 

To further probe the validity of the 1,2-hydride-
shift mechanism, the rate of the reaction and KIE 
were determined computationally using canonical 
variational transition state theory (CVT) with small-
curvature tunneling (SCT) correction. These 
calculations were carried out on the M06-2X/6-
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POLYRATE[25] and Gaussian16.[26] The SMD model 
was used to include solvent effects.[27] Of all possible 
allylic-isomerization processes, the 1,2-hydride shift 
was found to be the fastest, both with and without 
considering tunneling (Figure 1). The CVT/SCT-
predicted reaction rate constant at 294.15 K of 1.57 × 
10-3 s-1 is in good agreement with the experimentally 
determined rate constant (3.33 × 10-3 s-1). The KIE 
was calculated by comparing the calculated reaction 
rate constant for the 1,2-deuteride shift of 1.94 × 10-4 
s-1 (CVT/SCT) with the above-mentioned value for 
the analogous hydride shift; the CVT/SCT KIE value 
of 8.1 is close to the experimental value. The CVT 
KIE value of 4.2 (without tunneling correction) is 
significantly different from the experimental value. 
These computational results support the notion that 
the 1,2-hydride shift is the rate-determining step in 
this reaction and that tunneling accelerates this 
hydride shift. 

 

Figure 1. Free energy profile for the 1,2-hydride/deuteride 

shift in the alkoxide of 1a. Transmission coefficient values 

() are also shown. VTS = variational transition state. 

On the basis of the experimental and computaional 
studies, we propose the reaction mechanism shown in 
Scheme 6. The OH proton of 1 is initially abstracted 
by KHMDS to form alkoxide A. Due to the low 
electrophilicity of the ,-unsaturated amide 9, A is 
reluctant to undergo oxa-Michael addition to 9 and is 
therefore transformed into the homoenolate B 
through a 1,2-hydride shift, which is the rate-
determining step and in which tunneling is involved. 
B is rapidly protonated by 1 prior to reaction with 9, 
and the -proton of the resulting ketone C is 
deprotonated by A to generate enolate D, which then 
undergoes Michael addition to 9 to give enolate E, 
which is protonated by 1 to afford product 10 and 
regenerate A. 

 

Scheme 6. Proposed catalytic cycle. 

Conclusion 

 
In conclusion, we developed novel KHMDS-
catalyzed Michael-addition chemistry of allylic 
alcohols with ,-unsaturated amides that involves 
allylic isomerization. A series of mechanistic studies, 
including radical-inhibition, deuterium-labeling, 
kinetics, and KIE experiments, along with a 
computational study led us to propose that the in-situ 
generation of the enolate from the allylic alcohol 
through a tunneling-assisted 1,2-hydride shift is the 
key step in this transformation. Further investigations 
into the reaction mechanism and applications of this 
protocol to the use of allylic alcohols as 
homoenolates are currently underway in our 
laboratory. 

Experimental Section 

Allylic alcohol 1 (0.36 mmol) was placed in an oven-dried 
vial equipped with a magnetic stir bar. The vial was 
flushed with argon and sealed with a rubber septum. To the 
vial were added THF (3 mL), ,-unsaturated amide 9 
(0.30 mmol), and KHMDS (0.5 M in toluene, 0.015 mmol, 
30 L), and the mixture was stirred at room temperature 
for 1.5 h. The reaction was quenched with saturated aq. 
NH4Cl solution and extracted with Et2O. The organic layer 
was dried over Na2SO4 and concentrated under reduced 
pressure. The residue was purified by flash 
chromatography on silica gel (hexane/EtOAc) to give the 
corresponding product 10. 
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