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The selective trifluoromethylation of aryl- and vinylboronic 

acids proceeds smoothly with CF3SO2Na (Langlois reagent) in 

the presence of copper catalysts and t-BuOOH. Thereby, the 

method relies both on transition metal catalysis and selective 10 

radical reactions. Advantageously, the protocol can be 

performed at room temperature under air atmosphere and 

avoid the issue of poor regioselectivity 

Trifluoromethylated aryl and heteroaryl compounds represent an 

important structural motif in pharmaceuticals, agrochemicals, and 15 

advanced organic materials.1 Due to the increasing interest on this 

class of compounds, the development of new methodologies for 

generation C-CF3 bonds has attracted significant attention in 

recent years.2 More specifically, two major approaches for the 

formation of these bonds have emerged in the last decade: On the 20 

one hand, transition metal catalyzed or metal-mediated 

trifluoromethylation reactions are applied using pre-

functionalized substrates such as aryl halides,3 arylboron 

compounds,4 arenes substituted with directing groups,5 or 

heteroarenes.6 Clearly, the major advantage of this approach is 25 

the control of the specific regioselectivity. Unfortunately, these 

transformations always involve relatively expensive 

trifluoromethylsilanes, such as Ruppert’s reagent  (TMSCF3)
3a-

b,3g,3h,3j,3k,3m,4a-b,4f,5b,6 or TESCF3
3c,3d to generate a CF3

- synthon 

(Eq 1), and  S-(trifluoromethyl) thiophenium salts,3f,4d,4e,5 Togni’s 30 

reagent4c,4i to generate a CF3
+ intermediate (Eq 2). A second 

synthetic approach takes advantage of highly reactive CF3 

radicals.7 For examples, the groups of MacMillan7c and Baran7d 

demonstrated elegantly the direct trifluoromethylation of arenes 

and heterocycles. They used either visible light or t-BuOOH 35 

(TBHP) to initiate CF3 radical formation from CF3SO2Cl or the 

Langlois reagent (CF3SO2Na).7a,8 The latter reactions proceed 

under mild conditions, albeit with poor regioselectivity (Eq 3). 

Inspired by these results, we envisioned to bring together the 

advantages of both strategies by combining transition metal 40 

catalysis with the high reactivity of CF3 radicals. Probably, in 

such an approach the regioselectivity might be controlled by 

transition metal catalysis, while the CF3 radical is generated 

under mild reaction conditions from less expensive reagents. 

Notably, during our work Sanford and co-workers reported an 45 

approach towards this direction using the CuOAc-catalyzed 

trifluoromethylation with CF3I using visible light at 60°C (Eq 4).9 

Herein, we report copper-catalyzed trifluoromethylations of aryl 

and vinyl boronic acids with in situ generated CF3-radicals from 

the reaction of TBHP and CF3SO2Na at room temperature with 50 

the mixture of water and DCM as solvents. 

 

 

  

 55 

 

 

 

 

 60 

 

 

 

Scheme 1 Strategies for the formation of C-CF3 bonds. 

 65 

    At the start of our investigations, 4-methoxyphenyl-boronic 

acid (1a) was selected as a substrate for selective 

trifluoromethylation. Obviously, there are two major problems in 

this model reaction: The first issue is the competition of the direct 

radical reaction with the arene compared to the small amount of 70 

in situ formed aryl metal species. The second issue is to avoid 

oxidation of the arylboronic acid.10 To overcome these problems, 

different metal catalysts including Pd,3d,3m,5,6a,11 and Cu 

complexes3a-3c, 3e-3l,3n,4,6b were tested. In addition, an extensive 

variation of reaction parameters, e.g. ligands, solvents, 75 

temperature, additives, etc. were performed. To our delight, the 

desired product 4a was obtained in decent yield (53%) using 

simple Cu(OAc)2 as catalyst in a mixture of DCM and water as 

solvent at rt  (Table 1, entry 1). Noteworthy, without Cu(OAc)2 

less than 5% of product was detected (Table 1, entry 2). 80 

Cu(I)OAc and other copper catalysts exhibited lower efficiency 

than Cu(OAc)2 (Table 1, entries 3-8). Under slightly acidic 

reaction conditions the chemoselectivity of this transformation is 

increased. Hence, using 2.5 equiv of NH4Cl promoted a higher 

yield of 4a (Table 1, entries 1, 9 and 10). Notably, the function of 85 

the ligand (2,4,6–collidine) to the metal is important to this 

reaction, too (Table 1, entries  11-15).  In the absence of 2,4,6–

collidine, the reaction yield was decreased sharply to only 22% 

(Table 1, entry  11). Increasing the amount of the 

Ar ArCF3+
[TM]

1. TM catalyzed or mediated trifluoromethylation:

2. Radical trifluoromethylation:

(Eq. 1)

ArCF3 (Eq. 3)

photoredox
catalysis

+ CF3SO2R'
or t-BuOOH

This work:

RB(OH)2 RCF3

cat. [Cu]

+ CF3SO2Na
t -BuOOH

CF3
-R

R = H, X, B(OH)2 and its derivatives

R' = Cl, Na

3. Cooperation of TM catalysis with radical trifluoromethylation:

ArB(OH)2 ArCF3+ CF3I

photoredox
catalysis

(Eq. 4)

cat. [Cu]
(Eq. 5)

Ar H

CF3
+Ar R + ArCF3

[TM]
(Eq. 2)

R = Ar, vinyl

DMF, 60 °C

DCM/H2O, rt
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trifluoromethylation reagent (NaSO2CF3) improved the yield to 

64% (Table 1, entries 1, 16 to 17) and raising the ratio of TBHP 

to NaSO2CF3 led to a slightly higher efficiency (Table 1, entry 

18). Finally, addition of 0.24 equiv of imidazole as an additive 

gave the desired product in a 74% yield (Table 1, entry 19). 5 

Table 1 Copper-catalyzed trifluoromethylation of 4-
methoxyphenylboronic acid: Variation of reaction conditionsa 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

With the optimized reaction conditions in hand, the substrate 

scope was investigated. Arylboronic acids with electron-donating 25 

substituents (methoxy, methyl, 3,4-methylenedioxy) underwent 

trifluoromethylation in good yields (Table 2, 4a, 74% yield, 4b, 

66% yield, 4c, 61%). Classic hydroxyl protecting groups (Bn and 

TBS) are well-tolerated in this reaction (Table 2, 4d, 73% yield, 

4e, 69% yield). Notably, methylthio and N,N-dimethylamino 30 

substituents survive under the mild reaction conditions, albeit in 

modest yields (Table 2, 4f, 47% yield, 4g, 39% yield). We 

observed that steric hindrance in ortho position to the boryl group 

decreased the reaction efficiency somewhat (Table 2, 4h, 4i).  

Decreasing of substrates’ electron density induced some 35 

lower reaction efficiency (Table 2, 4j-4o). Halide-substituted 

starting materials represent especially interesting substrates 

because of further functionalization of trifluoromethylated arenes. 

Hence, we were pleased to find that the reactions of 4-

iodophenylboronic acid as well as the corresponding bromides 40 

and chlorides worked reasonably well when increasing the 

amount of Cu(OAc)2 (Table 2, 4m-4o). Some typical examples of 

heteroaromatic substrates were also investigated. In fact, the 

arylboronate derived from benzofuran underwent the reaction 

with good yield (Table 2, 4p) and the corresponding boronic acid 45 

derived from an indole derivative also gave an acceptable yield 

(Table 2, 4q). Then, 6-bromohexylboronic acid was selected as 

an example to investigate the activity of the alkylboronic acids. 

However, no desired product was observed in this case. 

Conjugated aromatic systems with trifluoromethyl 50 

substituents such as β-trifluoromethylstyrene derivatives have 

found wide use in Organic Light Emitting Diodes (OLEDs) and 

they are of general interest for other applications as advanced 

materials.12 Hence, we were pleased to find that our novel 

protocol can be also applied to vinylboronic acids.13 55 

Table 2 Substrate scope of the Cu-catalyzed trifluoromethylation 

of arylboronic acidsa† 

 
Compared with the trifluoromethylation of arylboronic acids, the 

vinylboronic acids are less sensitive towards the influence of 60 

substituents (Table 3, 6a-6g). Even with strong electron-

withdrawing substituents (6f, 6g), the trifluoromethylation 

proceeded smoothly with good yields. It should be noted that the 

trifluoromethylation occurred highly selective and no (Z) isomer 

was observed during this protocol.4c,4d,13e,13f,14. Next, (Z)-65 

potassium styryltrifluoroborate was selected as a representative of 

Z-alkenylboronic acid derivatives for stereoselectivity studies. 

Contrary to the (E)-vinylboronic acids, the (Z)-isomer gave a 

mixture of regioisomers with a ratio of E:Z = 1 : 0.7. The 

formation of this mixture is attributed to higher stability of the 70 

(E)–isomer. 

 

Table 3 Trifluoromethylation of vinylboronic acidsa  

 
Based on our observations, we propose the reaction 75 

mechanism as shown in Scheme 2. On the one hand, 

transmetallation of the arylboronic acid takes place with the 

active Cu(II) species (7) to give the aryl copper(II) complex (8). 

On the other hand, the CF3 radical is generated from the reaction 

of TBHP with NaSO2CF3. Reaction of both active species should 80 

afford the arylcopper(III)CF3 intermediate (9) (path A).15 

The desired product is obtained by reductive elimination of 

intermediate 9 which also releases the Cu(I) complex (10). 

Finally, 10 is re-oxidized to the active Cu(II) catalyst (7) to close 

 85 

+ CF3SO2Na

20 mol% [Cu]

DCM, H2O

Entry Yield(%)c

+ TBHP

CF3SO2Na TBHPb NH4Cl

5.0 10.0 1.0 46

5.0 10.0 1.5 49

5.0 10.0 2.5 49

5.0 10.0 3.0 28

17 7.0 14.0 2.0 64

16 6.0 12.0 2.0 55

7.0 16.1 2.0 66

2.5

2.5

2.5

2.5

2.5

2.5

2.5

9 5.0 10.0 2.0 363.0

11 5.0 10.0 222.5

7.0 16.1 2.0 74d2.5

1 5.0 10.0 2.0 532.5

2 5.0 10.0 2.0 <52.5

[Cu]

Cu(OAc)2

3 5.0 10.0 2.0 402.5CuOAc

4 5.0 10.0 2.0 442.5Cu(CF3CO2)2•H2O

5 5.0 10.0 2.0 402.5CuBr

6 5.0 10.0 2.0 382.5CuI

7 5.0 10.0 2.0 362.5Cu(CH3CN)4BF4

8 5.0 10.0 2.0 442.5Cu(CH3CN)4OTf

Cu(OAc)2

Cu(OAc)2

12 Cu(OAc)2
13 Cu(OAc)2

14 Cu(OAc)2

15 Cu(OAc)2
Cu(OAc)2
Cu(OAc)2

18 Cu(OAc)2
19 Cu(OAc)2

2,4,6-collidine

2,4,6-collidine
(equiv)(equiv) (equiv) (equiv)

rt, air, 6 h1a 2 3 4a

MeO B(OH)2 MeO CF3

10 5.0 10.0 392.0Cu(OAc)2 2.0

a All the reactions were performed on 0.25 mmol scale in DCM (4 mL) and H2O (1.5 mL).
b TBHP (tert-butyl hydroperoxide) was used as 70% solution in water. c GC yield is shown

and dodecane was used as internal standard. d 0.24 equiv of imidazole was added.
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Scheme 2 Proposed reaction mechanism 

the catalytic cycle. Another mechanistic pathway which we can 

not exclude at this point is the reaction of the Cu(II) complex 7 

with CF3 radicals to generate the aryl copper(III) complex 11.6b 15 

Subsequent transmetallation with the aryl- or vinylboronic acid 

will lead again to intermediate 9 (path B). 

In summary, this communication reports a convenient Cu-

catalyzed trifluoromethylation of aryl- and vinylboronic acids 

using less expensive and stable CF3SO2Na as CF3 source. 20 

Although a large quantity of TBHP was used, synthetic 

applications are not limited because of the very low cost. The 

protocol is robust and the reactions work in water and DCM 

under air atmosphere at room temperature. Notably, the presented 

methodology makes use of cooperative transition metal catalysis 25 

and CF3 radical formation. Furthermore, it suggests a new 

orientation in organic transformations.9,16 
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