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Enantioselective Syntheses of Monomori~m minutum Ant Venom Alkaloids : 
(SR)-2-(5-Hexenyl)-5-nonyl-3,4-dihydro-ZH-pyrrole and (2R,5R)-2-(5Hexenyl)-5nonylpyrrolidine 

from (S)-pyroglutamic acid. 
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Abstract : We describe enantioselective syntheses of 2,5-disubstituted pyrroline and 
pyrrolidine with unsaturated radical, st;u-ting from (S)-pyroglutamic acid. 

2,5-Disuhstitutcd pyrrolines and pyrrolidines characterize a large family of naturally occur@ alkaloids, 

many of which display significant biological activity 1*2. Termites in the genus Reticulitermes represent the 

largest source of food of ants in the genus Monomorium. When killing their prey, ants use a paralysing 
ve.nom. The analysis of the chemical composition of the ve.nom of European ~~~f~[~~l~~~~~~~ nrinulufn species 

and the determination of the quantity of each separate constituent were achieved using coupled GC-MS3. 
Three tra?lspyrmlidines (1 a,b,c), and two pyrrolines (2 a,b) were detected. Their absolute configurations 
havG n(:)t been yet cstablis;h&, owing to the scarcity of the natural material. 

a ; RI= (CH2)7-CH-CHz, R2= (CH2)4-CH=CH2 

b ; R1= n-C9H19. R2= (CH&CH=CH2 

C ; RI= n-CgHlg, K2= n C6H13 

2h 

We have now developpcd general routes to optically active trans-2,5=dialkylated pyrrolidincs and 

: 

(2R,SR)-2-(5hexenyl)-5-nonyl-pyrrolidine 

biological precursor the (SR)-pyrroline 2b. 

il 
2 3 4 

the enantioselective preparations of the enantiomer 

lb which is the most important component of the venom and its 

The two strategies reported introduce the nonyl substituent either 
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from the tosylate Ze, or from the thiolactim ether 3g (Scheme l), to prepare respectively the natural 

(2R)-2-(5-hejrenyl)-5-nonyl-3,4-dihydro-2H-pyrrole 2b (Route A - Scheme 2), and the S-hydroxymethyl 
cyclic imine 3b (Route B Scheme 3). 

(i& 4a;K=H 

b ;R=CH3 

(iii) 
~~;R~_M~QH,R~~QH --(vi) ?,e;R1=QH.R2=CH2QAc 

e;R1=CH2QTs,R2=OH (vii> 

(iv) f ; II1 = ~I-C~H,~, R* = OH 
(viii) 

f; R1=SH,R2=CH20Ac 

g ; R1= SMe , R2 = CH*QH 

(VI g ; R1 = n=CgH1g, R2 = QEt 

Route A Route B 

&age I (i) MeOH, SBCl,; (ii) NaRH4, EtUH: (iii) TsCl, N(Et),; (iv) in-C&,~]~CuLi; (v) Et@BF~, 
CH,Cl,; (vi) AC..&), pyridine; (vii) Lawesson’s reagent; (viii) CH,I, then MeONa-MeOH. 

Scheme 1 

Rout.e A ; Syntheses of natural pyrroline 2b and pyrrolidine lb. 

(S)-Pyroglutamic acid is esterified, reduced, then the resulting alcohol 2d is converted into the tosylate 

2e6. Lithium dioctyl cuprate reacts with compound 2e to give (R)-5nonylpyrrolidinone 2f in 80% yield 

[a]22D +9 (~0.91, EtOH). Lactim ether 2g is prepared by reaction of lactam 2f with Meerwein’s salt 
(Et,ORFi) (Scheme I), then condensed with isopropylidene malonate in chloroform with a calalytic ar~~ounl 

of Ni(acac)z to give compound 5 in 84% yield [a12*, +17 (~0.87, CHCl& A monodecarboxylating 
transesterification of p-enamino diester 5, in EtOH at 230°C for 30 minutes leads to the (SR)-Z-ethyl 
(5-nnny!-2-~~hy~ofopy-wolidinylidenp) acetate 6a in 74% yield [a]22D 20 (c=2.12. CHCl& Afterwards the 

sodium salt of 6a is generated by action of sodium hydride in toluene, then alkylated with I-bromo-4-pentene 

leading to the C-alkylated p-enamino ester 6b which is already decarboxylated using boric acid at 2OO’C to 
give the natural imine 2b7 in 30% yield (2 steps), [a]19, +36 [c=1.55, CHCl$ (Scheme 2). 

&;yzoEt O) ) n_c9Hy9M;K ~c9~l~q-J=(:02Et 
2 g ; R1 = n-CgH19, R2 = OEt 

A 0 k 
5 

(iii) c 
6a;R=H 

b ; R = -(C-H,),-CH=CHz 

2b 

Reagents : (i> Meldrum’s acid, Ni(acac)2, CHC13: (ii) EtOH, 230°C; (iii) NaH, Br-(CH&CH=CH2, 

toluene; (iv) H3B0,, 200°C; (v) NaBH4, AcOH. 
Scheme 2 
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Chemical reduction of imine 2b with sodium borohydride in acetic acid leads to a mixture of tram and 
cis-pyrrolidines lb and 7b (ratio 65/35 established by 13C-NMR8) which is difficult to separate. 

In continuation of our work on the synthesis of optically truns-2,5-dialkylated pyrrolidines we have 
developped a second strategy where we expected to provide better selectivity towards the reduction of imines 

and easier separation of pyrrolidines diastereoisomers. 

Route B : Second synthesis of Dyrrolidine lb. 
The alcohol 2d, resulting from the reduction of pyroglutamic acid is acetylated (Ac,O-pyridine) to give 

the acetate 3e, then followed by Lawesson’s treatment, the cristalline thiolactam 3f is obtained in 80% yield. 
Reaction of 3f with methyl iodide in methylene chloride at room temperature followed by a sodium 

methoxide in methanol reaction gives the thioimidate 3g9 (Scheme 1). Then nonylmagnesium bromide reacts 
with thiolactim ether 3g to lead to (S)-imino alcohol 3b in 75% yield [a]‘*, +68 (c=1.35, CHCQ. Reduction 

of imine 3h using N~BH(OAC)~ in toluene leads to a mixture of rruns and cis-hydroxymethylpyrrolidines Id 
and 7d (ratio 70/30 determined by G.C.) in 95% yield, followed by reaction with benzyl chloroformate at 

room temperature gives a mixture of carbamates le and 7e, a flash chromatography permits to isolate the pure 
tr;nns-carbamate le in 45% yield [a]*OD - 41 (c=l.O8, CHCl$. The benzyl methylene protons of compound le 

appear as a well-resolved AB quartet consistent with a tr~ln~ disposition of the two alkyl groups in which the 
methylene protons are nonequivalent. The trans carbamate le is converted into the tosylate If in 70% yield 

[a12’& -30 (c=1.04, CHCl,), and reacts with lithium dipentenyl cuprate to afford the pyrrolidine carbamate lg 
in 91% yield [c~]~*, - 50 (c-0.97, CHCl,). Finally, treatment of lg with Me,Sil gives the natural trans 

pyrrolidine lb in 66% yield [a]‘*, -3 (c=O.S, MeOH) (Scheme 3). 

3 g ; RI = SMe , R2 = CH2OH 3h 

{ii) 
) 

1 d; R1eCCgH19.R 2 =CH2OH,X=H 7d;x=H 

(iii) (iii) 

e; x=CBz e; X=CBz 

le (iv> ~ H~WPTs (VI ) H+,&--~cH=cH2~ 1 b 

n-qH;i 
% H 

;3Bz 

n-C&H;;” 
&Bz 

1 f ; It2 = CH2OTs 1 g ; R2 = -(CH2)&H=CH2 

Reagents : (i) n-C$IlgMgBr, ether-CH.j&; (ii) NaBH(OAc)3, toluene; (iii) CBzCl, NaHCO,, H20; [iv) 

TsCl, pyridine; (v) [CH2=CH-(CH&]$uL,i; (vi) Me,SiI, CHCl3. 

Scheme 3 
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The diastereoisomeric excess observed for the pyrrolidine formation may be attributed to the 
participation of the hydroxy group which directs delivery of hydride ion from the si-face of the imino group 

by forming a boronate complex’” to give the truns-2,5dialkylpyrrolidine Id. 

In conclusion, we describe the first enantioselective synthesis of 2,5disubstitued pyrroline with a 
terminal double bond and the second preparation of optically active trans-2,5 disubstituted pyrrolidine with 

an unsaturated substituent which will permit, in the future, to establish the absolute configurations of the 
natural products. 
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