## CONVENIENT METHOD FOR SYNTHESIS OF FUNCTIONALLY SUBSTITUTED HEXAHYDROQUINOLINES. MOLECULAR AND CRYSTAL STRUCTURE OF 4-ISOPROPYL-7,7-DIMETHYL-5-OXO-3-CYANO-2-CYANOMETHYLTHIO-1,4,5,6,7,8-HEXAHYDROQUINOLINE

## V. D. Dyachenko, V. N. Nesterov, S. G. Krivokolysko, and V. P. Litvinov

We have obtained 2-alkylthio-7,7-dimethyl-5-oxo-4-ethyl(isopropyl)-3-cyano-1,4,5,6,7,8-hexahydroquinolines by reaction of 5,5-dimethylcyclohexane-1,3-dione, propionic (or isobutyric) aldehyde, cyanothioacetamide, and alkyl halides. We have established the structure of 4-isopropyl-7,7-dimethyl-5-oxo-3-cyano-2cyanomethylthio-1,4,5,6,7,8-hexahydroquinoline by x-ray diffraction.

Functionally substituted hydrogenated 3-cyanopyridine-2(1H)-thiones are of considerable interest from the viewpoint of searching for new biologically active compounds with a broad spectrum of action [1-3]. In this respect, derivatives of hydrogenated quinolinethiones have been much less studied, undoubtedly because of the relatively smaller number of convenient methods for obtaining them. Among such methods the method we proposed earlier in [4, 5] stands out, based on reaction of arylmethylenecyanothioacetamides with dimedone. As a continuation of those studies, in this paper we have studied the reaction of dimedone, aliphatic aldehydes, and cyanothioacetamide in the presence of base, which allowed us to develop convenient methods for synthesis of functionally substituted hexahydroquinolinethiones and to study some of their properties.

On reaction of equimolar amounts of dimedone (I), aliphatic aldehyde (IIa, b), and cyanothioacetamide (III) in the presence of N-methylmorpholine at 20°C in ethanol, apparently the corresponding Knoevenagel condensation products are formed (IVa, b or Va, b), to which under the reaction conditions CH-acid I or III is added according to the Michael addition reaction. The adducts (VIa, b) appearing as a result of these processes undergo cyclocondensation to salts (VIIa, b). Subsequent S-alkylation by alkyl halides (VIIIa-e) yields sulfides (IXa-f) (method A). Acidification of the reaction mass with HCl before addition of halide VIII leads to formation of the substituted hexahydroquinolinethione (X), which confirms formation of salt VIIb in the reaction mixture. Sulfides IXa, b, f are also obtained by reaction of halides VIIIa-c with thione X in alkaline medium (method B).

Thus we improved the method for obtaining compounds IX by carrying out sequential reactions in a single production stage: alkylation of salts VII without isolation of the latter from the reaction mixture. This not only simplifies synthesis of sulfides IX but also increases their yield.

Cyclocondensation of dimedone, aliphatic aldehyde, and malononitrile probably occurs similarly. In this case, pyrans (XVIa, b) are obtained in quantitative yield through a stage of formation of substituted ethylenes (Va, b, XIIIa, b) and adducts (XIVa, b, XVa, b).

The PMR spectra of compounds IX, X, XVI contain signals from the protons of the dimedone moiety, the substituents R, X, Z, and the amino group (Table 1). Also characteristic are chemical shifts of the NH protons in the form of singlets at 9.45-12.43 ppm and the  $C_{(4)}$ -H chemical shift in the form of a doublet or a triplet in the 3.33-4.40 ppm region.

T. G. Shevchenko Lugansk State Pedagogical Institute, Lugansk 348011. A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, Moscow 117813. N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 785-792, June, 1997. Original article submitted July 16, 1996; revision submitted December 23, 1996.



Fig. 1. General view of IXa molecule.

In the IR spectra, we observe absorption bands for stretching vibrations of the conjugated cyano group at 2188-2210 cm<sup>-1</sup>, the amino group at 3182-3364 cm<sup>-1</sup>, the C=O group at 1620-1705 cm<sup>-1</sup>, and also the unconjugated cyano group at 2254 cm<sup>-1</sup>, which confirms the structure of the products obtained (Table 2).



B - N-methylmorpholine; II, IV -- VII a R - C2H5, b R - CH(CH3)2; VIII a Hal - Cl, Z - CN, X - H; b Hal - Cl, Z - 4-BrC6H4NHCO, X - H; c Hal - Cl, Z - CONH2, X - Ph; d Hal - I, Z - H, X - H; e Hal - Cl, Z - CONH2, X - H; IX a R - CH(CH3)2, Z - CN, X - H; b R - CH(CH3)2, Z - 4-BrC6H4NHCO, X - H; C R - C2H5, Z - CONH2, X - Ph; d R - C2H5, Z - H, X - H; e R - C2H5, Z - CONH2, X - H; f R - CH(CH3)2, Z - CONH2, X - H

| Com-  | Chemical shifts, $\delta$ , ppm        |                       |                        |                   |                       |                                   |                              |  |
|-------|----------------------------------------|-----------------------|------------------------|-------------------|-----------------------|-----------------------------------|------------------------------|--|
| pound | C <sub>(7)</sub> —(CH <sub>3)2</sub> S | C <sub>(6)</sub> 2H S | С <sub>(8)</sub> —2Н S | С(3)—Н,<br>С(4)—Н | NH, NH <sub>2</sub> S | R                                 | снх г                        |  |
| IX a  | 1,03                                   | 2,38                  | 2,20                   | 3,40 d            | 9,84                  | 1,65 m<br>0,75 d<br>0,85 d        | 4,22 s                       |  |
| IXb   | 1,01                                   | 2,38                  | 2,16                   | 3,33 d            | 10,01                 | 1,53 m<br>1,65 d<br>1,80 d        | 7,54 m<br>10,75 s,<br>4,00 s |  |
| IXc   | 0,94,<br>1,01                          | 2,30                  | 2,15                   | 3,35 t            | 9,52                  | 0,74 t<br>1,33 m                  | 7,99 д,<br>7,62 m<br>4,72 s  |  |
| IXd   | 0,98,<br>1,02                          | 2,33                  | 2,15                   | <b>3,4</b> 1 t    | 9,45                  | 0,75 t<br>1,34 m                  | 2,48 5                       |  |
| IXe   | 0,99,<br>1,03                          | 2,33 d                | 2,17 d                 | 3,41 t            | 10,26                 | 0,77 t.<br>1,35 m                 | 7,55 s,<br>7,88 s,<br>3,67 d |  |
| IXf   | 1,03                                   | 2,35 d                | 2,17                   | 3,32 d            | 10,10,<br>10,40       | 0,78 m<br>1,57 m                  | 3,68 d.<br>7,57 s,<br>7,88 s |  |
| x     | 1,04                                   | 2,31                  | 2,20                   | 4,40 đ<br>2,90 đ  | 12,43                 | 1,50 m<br>0,80 d<br>0,78 <u>d</u> |                              |  |
| XVIa  | 1,02                                   | 2,40                  | 2,24                   | 3,18 t            | 6,91                  | 0,71 t,<br>1,50 m                 |                              |  |
| XVIb  | 1,03                                   | 2,43                  | 2,26 d                 | 3,07 d            | 6,96                  | 0,67 d<br>0,92 d<br>1,73 m        |                              |  |

TABLE 1. PMR Spectra of Synthesized Compounds IX, X, XVI

In order to determine the direction of the cyclocondensation described above and the regioselectivity of alkylation of the hydrogenated quinolinethione X by halides VIII, using x-ray diffraction we unambiguously established the structure of compound IXa. In Fig. 1, we show the general view of the molecule; the bond lengths and bond angles are given in Tables 3 and 4.



 $X_{111} - X_{V1} a R = C_{2H5}, 0 R = CH(CH_3)_2$ 

In the investigated molecule, the dihydropyridine heterocycle has the boat conformation, the  $N_{(1)}$  and  $C_{(4)}$  atoms deviate from the plane of the remaining four atoms of the "bottom of the boat" of the heterocycle (planar to accuracy  $\pm 0.004$  Å) by -0.144 and -0.307 Å respectively, which corresponds to bending of the ring along the lines  $C_{(2)}...C_{(8a)}$  by 12.2°,  $C_{(3)}...C_{(4a)}$  by 20.3°,  $N_{(1)}...C_{(4)}$  by 20.7°. We established such a conformation for this ring in the previously investigated molecules of substituted 1,4-dihydropyridines, which contain an aryl substituent at  $C_{(4)}$  [6].

| P.         |
|------------|
| .а         |
| 5          |
| XVIa       |
| -          |
| ×          |
| ÷          |
| ъ-         |
| IXa        |
| 5          |
| Ë          |
| H          |
| <u>Š</u>   |
| h          |
| ö          |
| υ          |
| Ð          |
| Se         |
| Si         |
| he         |
| nt         |
| S.         |
| с.<br>     |
| 5          |
| S          |
| Ĕ          |
| is         |
| ē          |
| ច          |
| L13        |
| ha         |
| Ċ          |
| ABLE 2. Ch |
| - (14      |
| щ          |
| Ы          |
| N          |
| F          |
|            |

| Yield, %,<br>method A/B         |                     | 80/75                                             | 68/60                 | 88                                                              | 60                                                | 81                                                              | 72/70                                                           | 12                                                | 11                                                            | 85                                                            |
|---------------------------------|---------------------|---------------------------------------------------|-----------------------|-----------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| v, cm <sup>-1</sup>             | NH, NH <sub>2</sub> | 3183                                              | 3300, 3195            | 3270, 3182                                                      | 3165                                              | 3195, 3422                                                      | 3210, 3425                                                      | 3170                                              | 3200, 3285, 3364                                              | 3195, 3308, 3364                                              |
| IR spectra, v, cm <sup>-1</sup> | CIN                 | 2205, 2254                                        | 2188                  | 2204                                                            | 2193                                              | 2206                                                            | 2200                                                            | 2245                                              | 2190                                                          | 2210 sh                                                       |
|                                 | C = O               | 1620                                              | 1624, 1670            | 1610 sh, 1705                                                   | 1622 sh                                           | 1620 sh, 1680                                                   | 1654, 1710                                                      | 1642                                              | 1650 sh                                                       | 1658 sh                                                       |
| mp, °C                          |                     | 187 - 189*                                        | 242 _ 244             | 136 - 138                                                       | 192 - 194                                         | 215 - 217*                                                      | 233 - 235*                                                      | 201 - 203                                         | 174 - 176                                                     | 183 - 185                                                     |
| Found &<br>Calculated %         | s                   | 01,01<br>10,16                                    | <u>6,56</u>           | 8,11                                                            | 11.68<br>11,60                                    | 10,04                                                           | <u>9,62</u>                                                     | 11.56<br>11,60                                    |                                                               |                                                               |
|                                 | z                   | 13.40<br>13,32                                    | <u>8.72</u><br>8,60   | 10.55<br>10,62                                                  | 10.05<br>10,14                                    | <u>13.07</u><br>13,16                                           | 12.55<br>12,60                                                  | 10.20<br>10,14                                    | 11.49<br>11,37                                                | 10.68<br>10,76                                                |
|                                 | н                   | 6,71                                              | 5.43<br>5,37          | <u>6.24</u><br>6,37                                             | <u>7,29</u>                                       | <u>6.55</u><br>6,63                                             | <u>6,84</u><br>6,95                                             | 7.21<br>7,29                                      | 7,37                                                          | 7.74                                                          |
|                                 | υ                   | <u>64.80</u><br>64,73                             | <u>56.44</u><br>56,56 | <u>66,90</u><br>66,81                                           | 65.11<br>65,18                                    | 60.23<br>60,16                                                  | <u>61.30</u><br>61,23                                           | <u>65.24</u><br>65,18                             | <u>68.38</u><br>68,27                                         | <u>69,33</u><br>69,20                                         |
| Empirical<br>formula            |                     | C <sub>17</sub> H <sub>21</sub> N <sub>3</sub> OS | C23H26BrN3O2S         | C <sub>22</sub> H <sub>25</sub> N <sub>3</sub> O <sub>2</sub> S | C <sub>15</sub> H <sub>20</sub> N <sub>2</sub> OS | C <sub>16</sub> H <sub>21</sub> N <sub>3</sub> O <sub>2</sub> S | C <sub>17</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> S | C <sub>15</sub> H <sub>20</sub> N <sub>2</sub> OS | C <sub>14</sub> H <sub>18</sub> N <sub>2</sub> O <sub>2</sub> | C <sub>15</sub> H <sub>20</sub> N <sub>2</sub> O <sub>2</sub> |
| Com-<br>pound                   |                     | IXa                                               | qXI                   | IXc                                                             | PXI                                               | IXe                                                             | IXf                                                             | ×                                                 | XVIa                                                          | XVIb                                                          |

<sup>\*</sup>The compound was recrystallized from 1-butanol.

| Bond       | d/Å      | Bond       | d/Å       | Bond                               | d/Å      |
|------------|----------|------------|-----------|------------------------------------|----------|
|            | 1 5(8/2) |            | 1 531 (2) | C                                  | 1,527(3) |
| S(1)-C(2)  | 1,768(2) | C(3)—C(4)  | 1,521 (3) | C <sub>(7)</sub> —C <sub>(8)</sub> |          |
| S(1)-C(15) | 1,824(3) | C(3)—C(14) | 1,427(3)  | C(7)—C(9)                          | 1,530(4) |
| O(1)C(5)   | 1,232(2) | C(4)C(4a)  | 1,511(3)  | C(7)-C(10)                         | 1,530(4) |
| N(1)-C(2)  | 1,375(3) | C(4)-C(11) | 1,551(3)  | C(8)C(8a)                          | 1,499(3) |
| N(1)-C(8a) | 1,375(2) | C(4a)C(5)  | 1,446(3)  | C(11)-C(12)                        | 1,510(4) |
| N(2)-C(14) | 1,141(3) | C(4a)C(8a) | 1,354(2)  | C(11)C(13)                         | 1,524(6) |
| N(3)-C(16) | 1,135(5) | C(5)-C(6)  | 1,504(3)  | C(15)-C(16)                        | 1,447(5) |
| C(2)-C(3)  | 1,352(3) | C(6)-C(7)  | 1,527(3)  |                                    |          |

TABLE 3. Bond Lengths d (Å) in the IXa Molecule

TABLE 4. Bond Angles  $\omega$  (degrees) in IXa Molecule

| Angle                           | ω        | Angle                           | ω        |
|---------------------------------|----------|---------------------------------|----------|
| C(2)-S(1)-C(15)                 | 99,4(1)  | C(5)C(6)C(7)                    | 114,4(2) |
| $C_{(2)} - N_{(1)} - C_{(8a)}$  | 121,0(2) | C(6)—C(7)—C(8)                  | 107,6(2) |
| $S_{(1)}-C_{(2)}-N_{(1)}$       | 115,9(1) | C(6)-C(7)-C(9)                  | 109,7(2) |
| S(1)-C(2)-C(3)                  | 123,6(2) | C(8)-C(7)-C(9)                  | 110,9(2) |
| $N_{(1)}-C_{(2)}-C_{(3)}$       | 120,3(2) | C(6)-C(7)-C(10)                 | 110,2(2) |
| $C_{(2)}-C_{(3)}-C_{(4)}$       | 121,7(2) | C(8)-C(7)-C(10)                 | 109,3(2) |
| C(2)-C(3)-C(14)                 | 120,3(2) | C(9)-C(7)-C(10)                 | 109,1(2) |
| C(4)C(3)C(14)                   | 117,9(2) | C(7)-C(8)-C(8a)                 | 113,3(2) |
| $C_{(3)} - C_{(4)} - C_{(4a)}$  | 108,6(2) | $N_{(1)}-C_{(8a)}-C_{(4a)}$     | 120,1(2) |
| C(3)-C(4)-C(11)                 | 113,9(2) | $N_{(1)}-C_{(8a)}-C_{(8)}$      | 115,9(2) |
| $C_{(4a)} - C_{(4)} - C_{(11)}$ | 112,1(2) | $C_{(4a)} - C_{(8a)} - C_{(8)}$ | 124,0(2) |
| C(4)C(4a)C(5)                   | 119,0(2) | $C_{(4)} - C_{(11)} - C_{(12)}$ | 112,9(2) |
| $C_{(4)} - C_{(4a)} - C_{(8a)}$ | 121,9(2) | $C_{(4)} - C_{(11)} - C_{(13)}$ | 111,6(2) |
| $C_{(5)} - C_{(4a)} - C_{(8a)}$ | 119,1(2) | C(12)-C(11)-C(13)               | 111,3(3) |
| $O_{(1)}-C_{(5)}-C_{(4a)}$      | 120,5(2) | N(2)-C(14)-C(3)                 | 174,4(2) |
| O(1)-C(5)-C(6)                  | 120,7(2) | S(1)-C(15)-C(16)                | 112,1(2) |
| $C_{(4a)} - C_{(5)} - C_{(6)}$  | 118,7(2) | $N_{(3)}-C_{(16)}-C_{(15)}$     | 177,8(4) |

The cyclohexenone ring has the conformation of a distorted half-chair: the  $C_{(6)}$  and  $C_{(7)}$  atoms deviate on different sides from the moiety  $C_{(8)}$ ,  $C_{(8a)}$ ,  $C_{(4a)}$ ,  $C_{(5)}$  (planar to accuracy  $\pm 0.015$  Å) by 0.062 and -0.605 Å respectively, and the dihedral angle between the considered planar moieties of the molecule is equal to 12.0°, i.e., the bicyclic system is slightly flattened (see Fig. 1).

The orientation of the isopropyl substituent at the  $C_{(4)}$  atom relative to the "bottom of the boat" of the heterocycle in other moieties of the molecule is such that the number of constrained intramolecular nonvalence contacts is minimum  $(C_{(13)}...C_{(14)} 3.224(3) \text{ Å};$  twice the van der Waals radius of the C atom, 3.40 Å [7]). However, this eliminates the possibility of free rotation about the  $C_{(4)}...C_{(11)}$  bond.

The spatial arrangement of the S-cyanomethylene moiety relative to the "bottom of the boat" of the heterocycle is characterized by the values of the torsional angles:  $C_{(3)}C_{(2)}S_{(1)}C_{(15)} - 111.4$ °C,  $C_{(2)}S_{(1)}C_{(15)}C_{(16)}$ 70.1°,  $S_{(1)}C_{(15)}C_{(16)}N_{(3)} - 88.8$ °.

The bond lengths and bond angles in the investigated molecule are comparable with those we established earlier in 1,4-dihydropyridines [8] and with the standard values in [9].

In the crystal, the intermolecular hydrogen bonds  $N_{(1)}-H_{(1)}...O_{(1)}$  (x, -0.5 - y, -0.5+z) ( $N_{(1)}...O_{(1)}$  2.775(3),  $N_{(1)}...H_{(1)}$  0.85(2),  $H_{(1)}...O_{(1)}$  1.95(2) Å, angle  $N_{(1)}-H_{(1)}...O_{(1)}$  166(1)°) join the IXa molecules into infinite chains along the z axis.

## EXPERIMENTAL

The PMR spectra were taken on a Bruker WP-100 SY (100 MHz) in DMSO-D<sub>6</sub> (internal standard TMS). The IR spectra were taken on an IKS-29 spectrophotometer in Vaseline oil. The course of the reaction and the purity of the compounds were monitored using TLC on Silufol UV-254 plates; eluent, acetone – hexane (3:5).

| Atom $x$ $y$ $z$ S(1) $3194(1)$ $1089(1)$ $450(1)$ $O(1)$ $3342(2)$ $-3111(2)$ $3967(1)$ $N(1)$ $3126(2)$ $-1303(2)$ $897(1)$ $N(2)$ $2865(3)$ $2148(2)$ $3015(2)$ $N(2)$ $2865(3)$ $2148(2)$ $3015(2)$ $N(2)$ $2865(3)$ $2148(2)$ $3015(2)$ $N(2)$ $2990(2)$ $-138(2)$ $1233(1)$ $C(2)$ $2990(2)$ $-138(2)$ $2206(1)$ $C(4)$ $2589(2)$ $-1062(2)$ $2872(1)$ $C(4)$ $3492(2)$ $-2193(2)$ $2453(1)$ $C(5)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(5)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(5)$ $3462(2)$ $-4327(2)$ $2668(2)$ $C(7)$ $3584(2)$ $-4327(2)$ $2668(2)$ $C(7)$ $3584(2)$ $-4327(2)$ $1628(1)$ $C(8)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(9)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4233(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-128(2)$ $2618(2)$ $C(12)$ $589(3)$ $-128(2)$ $2618(2)$ $C(12)$ $889(3)$ $935(3)$ $-305(2)$ $C(12)$ $889(3)$ $935(3)$ $-305(2)$ $C(14)$ $2810(2)$ $-137(2)$ $31(1)$ $H(4)$ $348(2)$ $-349(2)$ $422(2)$ $H(3)$                                                                                                                          |        |          | r         | ·····    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------|----------|
| $O_{(1)}$ $3342(2)$ $-3111(2)$ $3967(1)$ $N(t)$ $3126(2)$ $-1303(2)$ $897(1)$ $N(t)$ $2863(3)$ $2148(2)$ $3015(2)$ $N(t)$ $114(3)$ $1515(3)$ $612(3)$ $C(2)$ $2990(2)$ $-138(2)$ $1263(1)$ $C(3)$ $2787(2)$ $23(2)$ $2206(1)$ $C(4)$ $2589(2)$ $-1062(2)$ $2872(1)$ $C(4)$ $3129(2)$ $-2193(2)$ $2453(1)$ $C(5)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(6)$ $3981(2)$ $-4327(2)$ $2668(2)$ $C(7)$ $3584(2)$ $-4598(2)$ $1628(1)$ $C(9)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(9)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $885(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(14)$ $2810(2)$ $-137(2)$ $311(1)$ $H(4)$ $362(2)$ $-372(2)$ $308(2)$ $H(4)$ $362(2)$ $-392(3)$ $197(2)$ $H(22)$ $455(2)$ $-331(2)$ $393(2)$ $H(13)$ $343(2)$ $-349(2)$ $422(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ <                                                                                                             | Atom   | x        | у         | Z        |
| $O_{(1)}$ $3342(2)$ $-3111(2)$ $3967(1)$ $N(t)$ $3126(2)$ $-1303(2)$ $897(1)$ $N(t)$ $2863(3)$ $2148(2)$ $3015(2)$ $N(t)$ $114(3)$ $1515(3)$ $612(3)$ $C(2)$ $2990(2)$ $-138(2)$ $1263(1)$ $C(3)$ $2787(2)$ $23(2)$ $2206(1)$ $C(4)$ $2589(2)$ $-1062(2)$ $2872(1)$ $C(4)$ $3129(2)$ $-2193(2)$ $2453(1)$ $C(5)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(6)$ $3981(2)$ $-4327(2)$ $2668(2)$ $C(7)$ $3584(2)$ $-4598(2)$ $1628(1)$ $C(9)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(9)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $885(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(14)$ $2810(2)$ $-137(2)$ $311(1)$ $H(4)$ $362(2)$ $-372(2)$ $308(2)$ $H(4)$ $362(2)$ $-392(3)$ $197(2)$ $H(22)$ $455(2)$ $-331(2)$ $393(2)$ $H(13)$ $343(2)$ $-349(2)$ $422(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ $H(23)$ $218(2)$ $-569(3)$ $197(2)$ <                                                                                                             |        |          |           |          |
| N(1) $3126(2)$ $-1303(2)$ $897(1)$ N(2) $2863(3)$ $2148(2)$ $3015(2)$ N(3) $114(3)$ $1515(3)$ $612(3)$ C(2) $2990(2)$ $-138(2)$ $1263(1)$ C(3) $2787(2)$ $23(2)$ $2206(1)$ C(4) $2589(2)$ $-1062(2)$ $2872(1)$ C(4) $2589(2)$ $-1062(2)$ $2872(1)$ C(4) $3129(2)$ $-2193(2)$ $2453(1)$ C(5) $3462(2)$ $-3195(2)$ $3091(1)$ C(6) $3981(2)$ $-4327(2)$ $2668(2)$ C(7) $3584(2)$ $-4598(2)$ $1628(1)$ C(6) $3761(2)$ $-3432(2)$ $1037(2)$ C(4a) $3111(2)$ $-2295(2)$ $1499(1)$ C(6) $3761(2)$ $-3432(2)$ $1037(2)$ C(10) $4283(3)$ $-5647(3)$ $1218(2)$ C(11) $11232(2)$ $-1277(3)$ $3084(2)$ C(11) $11232(2)$ $-1277(3)$ $3084(2)$ C(12) $589(3)$ $-1485(4)$ $2181(3)$ C(13) $855(3)$ $-244(5)$ $3696(3)$ C(14) $2810(2)$ $1228(2)$ $2618(2)$ C(15) $1898(3)$ $935(3)$ $-305(2)$ C(16) $899(3)$ $1281(3)$ $203(2)$ H(11) $326(2)$ $-87(2)$ $347(1)$ H(42) $455(2)$ $-331(2)$ $93(2)$ H(63) $444(2)$ $-420(2)$ $268(2)$ H(63) $444(2)$ $-420(2)$ $268(2)$ H(63) $442(2)$ $-569(3)$ <td>S(1)</td> <td>3194(1)</td> <td>1089(1)</td> <td>450(1)</td>                                                                     | S(1)   | 3194(1)  | 1089(1)   | 450(1)   |
| N(z) $2863(3)$ $2148(2)$ $3015(2)$ $N(z)$ $114(3)$ $1515(3)$ $612(3)$ $C(z)$ $2990(2)$ $-138(2)$ $1263(1)$ $C(z)$ $2787(2)$ $23(2)$ $2206(1)$ $C(q)$ $2589(2)$ $-1062(2)$ $2272(1)$ $C(q)$ $3129(2)$ $-2193(2)$ $2453(1)$ $C(q)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(q)$ $3462(2)$ $-3195(2)$ $3091(1)$ $C(q)$ $3581(2)$ $-4598(2)$ $1628(1)$ $C(q)$ $3761(2)$ $-3432(2)$ $1037(2)$ $C(q)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(q)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(15)$ $1899(3)$ $1281(3)$ $203(2)$ $H(1)$ $326(2)$ $-87(2)$ $347(1)$ $H(q)$ $296(2)$ $-87(2)$ $39(2)$ $H(q)$ $296(2)$ $-87(2)$ $38(2)$ $H(q)$ $296(2)$ $-569(3)$ $197(2)$ $H(q)$ $296(2)$ $-569(3)$ $197(2)$ $H(q)$ $420(2)$ $-636(2)$ $160(2)$ $H(q)$ </td <td>O(1)</td> <td>3342(2)</td> <td>-3111(2)</td> <td>3967(1)</td>                                              | O(1)   | 3342(2)  | -3111(2)  | 3967(1)  |
| N(3)114(3)1515(3)612(3) $C(2)$ 2990(2)-138(2)1263(1) $C(3)$ 2787(2)23(2)2206(1) $C(4)$ 2589(2)-1062(2)2872(1) $C(4)$ 3129(2)-2193(2)2453(1) $C(5)$ 3462(2)-3195(2)3091(1) $C(6)$ 3981(2)-4327(2)2668(2) $C(7)$ 3584(2)-4598(2)1628(1) $C(6)$ 3961(2)-2295(2)1499(1) $C(6)$ 3311(2)-2295(2)1499(1) $C(9)$ 232(3)-4971(3)1595(2) $C(10)$ 4283(3)-5647(3)1218(2) $C(11)$ 1323(2)-1277(3)3084(2) $C(12)$ 589(3)-1485(4)2181(3) $C(13)$ 855(3)-244(5)3696(3) $C(14)$ 2810(2)1228(2)2618(2) $C(15)$ 1898(3)935(3)-305(2) $C(16)$ 899(3)1281(3)203(2) $H(1)$ 226(2)-137(2)31(1) $H(4)$ 296(2)-737(2)31(1) $H(4)$ 296(2)-737(2)31(2) $H(22)$ 455(2)-331(2)93(2) $H(23)$ 184(2)-488(2)188(2) $H(24)$ 420(2)-636(2)160(2) $H(10)$ 420(2)-636(2)160(2) $H(23)$ 450(3)-539(3)118(2) $H(10)$ 420(2)-636(2)160(2) $H(10)$ 420(2)-636(2)160(2) $H(10)$ 420(2) </td <td>N(1)</td> <td>3126(2)</td> <td>-1303(2)</td> <td>897(1)</td>                                                                                                                                                                                                | N(1)   | 3126(2)  | -1303(2)  | 897(1)   |
| $C_{12}$ 2990(2) $-138(2)$ $1263(1)$ $C_{33}$ $2787(2)$ $23(2)$ $2206(1)$ $C_{4}$ $2589(2)$ $-1062(2)$ $2872(1)$ $C_{49}$ $3129(2)$ $-2193(2)$ $2453(1)$ $C_{5}$ $3462(2)$ $-3195(2)$ $3091(1)$ $C_{6}$ $3981(2)$ $-4327(2)$ $2668(2)$ $C_{7}$ $3584(2)$ $-4327(2)$ $2668(2)$ $C_{7}$ $3584(2)$ $-4598(2)$ $1628(1)$ $C_{69}$ $2323(3)$ $-4971(3)$ $1595(2)$ $C_{10}$ $4283(3)$ $-5647(3)$ $1218(2)$ $C_{11}$ $1232(2)$ $-1277(3)$ $3084(2)$ $C_{11}$ $1232(2)$ $-1277(3)$ $3084(2)$ $C_{12}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{12}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{12}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{12}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{13}$ $855(3)$ $-244(5)$ $3696(3)$ $C_{14}$ $2810(2)$ $1228(2)$ $2618(2)$ $C_{14}$ $2810(2)$ $1281(3)$ $203(2)$ $H_{13}$ $323(2)$ $-87(2)$ $347(1)$ $H_{61}$ $296(2)$ $-87(2)$ $308(2)$ $H_{13}$ $383(2)$ $-500(2)$ $308(2)$ $H_{62}$ $455(2)$ $-331(2)$ $93(2)$ $H_{62}$ $184(2)$ $-428(2)$ $188(2)$ $H_{62}$ $184(2)$ $-583(2)$ $57(2)$ $H_{143}$ $420(2)$ $-583(2)$ </td <td>N(2)</td> <td>2863(3)</td> <td>2148(2)</td> <td>3015(2)</td>                    | N(2)   | 2863(3)  | 2148(2)   | 3015(2)  |
| Co<br>Ci<br>Ci<br>Ci<br>(4)2787(2)23(2)2206(1)C(4)2589(2) $-1062(2)$ 2872(1)C(4)3129(2) $-2193(2)$ 2453(1)C(5)3462(2) $-3195(2)$ 3091(1)C(6)3981(2) $-4327(2)$ 2668(2)C(7)3584(2) $-4397(2)$ 2668(2)C(7)3584(2) $-4327(2)$ 16228(1)C(6)3761(2) $-3432(2)$ 1037(2)C(8a)3311(2) $-2295(2)$ 1499(1)C(9)2332(3) $-4971(3)$ 1595(2)C(10)4283(3) $-5647(3)$ 1218(2)C(11)1323(2) $-1277(3)$ 3084(2)C(12)589(3) $-1485(4)$ 2181(3)C(13)855(3) $-244(5)$ 3696(3)C(14)2810(2)1228(2)2618(2)C(15)1898(3)995(3) $-305(2)$ C(16)899(3)1281(3)203(2)H(1)326(2) $-87(2)$ 347(1)H(6)383(2) $-500(2)$ 308(2)H(62)474(2) $-420(2)$ 268(2)H(63)383(2) $-500(2)$ 308(2)H(62)184(2) $-428(2)$ 188(2)H(93)220(2) $-569(3)$ 197(2)H(62)184(2) $-428(2)$ 188(2)H(93)211(2) $-510(3)$ 89(2)H(10)420(2) $-583(2)$ 57(2)H(10)120(2) $-563(2)$ 160(2)H(101)120(2) $-583(2)$ 57(2) <t< td=""><td>N(3)</td><td>114(3)</td><td>1515(3)</td><td>612(3)</td></t<>                                                                                                                                                                                    | N(3)   | 114(3)   | 1515(3)   | 612(3)   |
| $C_{(4)}$ 2589(2) $-1062(2)$ 2872(1) $C_{(4a)}$ 3129(2) $-2193(2)$ 2453(1) $C_{(5)}$ 3462(2) $-3195(2)$ 3091(1) $C_{(6)}$ 3981(2) $-4327(2)$ 2668(2) $C_{(7)}$ 3584(2) $-4598(2)$ 1628(1) $C_{(6)}$ 3761(2) $-3432(2)$ 1037(2) $C_{(8a)}$ 3311(2) $-2295(2)$ 1499(1) $C_{(9)}$ 2332(3) $-4971(3)$ 1595(2) $C_{(10)}$ 4283(3) $-5647(3)$ 1218(2) $C_{(11)}$ 1323(2) $-1277(3)$ 3084(2) $C_{(12)}$ 589(3) $-1485(4)$ 2181(3) $C_{(12)}$ 589(3) $-1485(4)$ 2181(3) $C_{(14)}$ 2810(2)1228(2)2618(2) $C_{(15)}$ 1898(3)935(3) $-305(2)$ $C_{(16)}$ 899(3)1281(3)203(2) $H_{(1)}$ 326(2) $-137(2)$ 31(1) $H_{(4)}$ 296(2) $-87(2)$ 347(1) $H_{(61)}$ 383(2) $-500(2)$ 308(2) $H_{(61)}$ 348(2) $-349(2)$ 42(2) $H_{(81)}$ 348(2) $-349(2)$ 42(2) $H_{(82)}$ 455(2) $-331(2)$ 93(2) $H_{(92)}$ 184(2) $-428(2)$ 168(2) $H_{(93)}$ 211(2) $-510(3)$ 89(2) $H_{(102)}$ 406(2) $-583(2)$ 57(2) $H_{(111)}$ 129(2) $-199(2)$ 346(2) $H_{(122)}$ 57(2) $-73(3)$ 118(2) $H_{(123)}$ 13(3)                                                                                                                                       | C(2)   | 2990(2)  | -138(2)   | 1263(1)  |
| $C_{(4)}$ $3129(2)$ $-2193(2)$ $2453(1)$ $C_{(5)}$ $3462(2)$ $-3195(2)$ $3091(1)$ $C_{(6)}$ $3981(2)$ $-4327(2)$ $2668(2)$ $C_{(7)}$ $3584(2)$ $-4598(2)$ $1628(1)$ $C_{(8)}$ $3761(2)$ $-3432(2)$ $1037(2)$ $C_{(8)}$ $3311(2)$ $-2295(2)$ $1499(1)$ $C_{(9)}$ $2332(3)$ $-4971(3)$ $1595(2)$ $C_{(10)}$ $4283(3)$ $-5647(3)$ $1218(2)$ $C_{(11)}$ $1323(2)$ $-1277(3)$ $3084(2)$ $C_{(12)}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{(13)}$ $855(3)$ $-244(5)$ $3696(3)$ $C_{(14)}$ $2810(2)$ $1228(2)$ $2618(2)$ $C_{(15)}$ $1898(3)$ $935(3)$ $-305(2)$ $C_{(16)}$ $899(3)$ $1281(3)$ $203(2)$ $H_{(1)}$ $326(2)$ $-137(2)$ $31(1)$ $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(62)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $38(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $38(2)$ $H_{(82)}$ $420(2)$ $-569(3)$ $197(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $38(2)$ $H_{(13)}$ $200(2)$ $-563(2)$ $160(2)$ $H_{(12)}$ $200(2)$ $-563(2)$ $160(2)$ $H_{(12)}$ </td <td>C(3)</td> <td>2787(2)</td> <td>23(2)</td> <td>2206(1)</td>      | C(3)   | 2787(2)  | 23(2)     | 2206(1)  |
| C(5) $3462(2)$ $-3195(2)$ $3091(1)$ $C(6)$ $3981(2)$ $-4327(2)$ $2668(2)$ $C(7)$ $3584(2)$ $-4598(2)$ $1628(1)$ $C(8)$ $3761(2)$ $-3432(2)$ $1037(2)$ $C(8a)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(9)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(16)$ $899(3)$ $1281(3)$ $203(2)$ $H(1)$ $326(2)$ $-87(2)$ $347(1)$ $H(4)$ $296(2)$ $-87(2)$ $308(2)$ $H(1)$ $326(2)$ $-137(2)$ $31(1)$ $H(4)$ $296(2)$ $-87(2)$ $308(2)$ $H(1)$ $326(2)$ $-650(2)$ $308(2)$ $H(61)$ $383(2)$ $-500(2)$ $308(2)$ $H(62)$ $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(62)$ $184(2)$ $-569(3)$ $197(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(103)$ $406(2)$ $-533(2)$ $57(2)$ $H(103)$ $406(2)$ $-73(3)$ $118(2)$ $H(103)$ $406(2)$ $-73(3)$ $171(2)$ $H(123)$                                                                                                                        |        | 2589(2)  | -1062(2)  | 2872(1)  |
| $C_{(6)}$ $3981(2)$ $-4327(2)$ $2668(2)$ $C_{(7)}$ $3584(2)$ $-4328(2)$ $1628(1)$ $C_{(8)}$ $3761(2)$ $-3432(2)$ $1037(2)$ $C_{(8)}$ $3311(2)$ $-2295(2)$ $1499(1)$ $C_{(9)}$ $2332(3)$ $-4971(3)$ $1595(2)$ $C_{(10)}$ $4283(3)$ $-5647(3)$ $1218(2)$ $C_{(11)}$ $1323(2)$ $-1277(3)$ $3084(2)$ $C_{(12)}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{(12)}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{(13)}$ $855(3)$ $-244(5)$ $3696(3)$ $C_{(14)}$ $2810(2)$ $1228(2)$ $2618(2)$ $C_{(15)}$ $1898(3)$ $925(3)$ $-305(2)$ $C_{(15)}$ $1898(3)$ $925(3)$ $-305(2)$ $C_{(16)}$ $899(3)$ $1281(3)$ $203(2)$ $H_{(1)}$ $326(2)$ $-137(2)$ $31(1)$ $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(4)}$ $296(2)$ $-349(2)$ $42(2)$ $H_{(61)}$ $383(2)$ $-500(2)$ $308(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(83)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(82)}$ $455(2)$ $-351(3)$ $89(2)$ $H_{(10)}$ $420(2)$ $-566(3)$ $197(2)$ $H_{(10)}$ $420(2)$ $-636(2)$ $160(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(102)}$ <                                                                       | C(4a)  | 3129(2)  | -2193(2)  | 2453(1)  |
| $C_{77}$ $3584(2)$ $-4598(2)$ $1628(1)$ $C(8)$ $3761(2)$ $-3432(2)$ $1037(2)$ $C(8a)$ $3311(2)$ $-2295(2)$ $1499(1)$ $C(9)$ $2332(3)$ $-4971(3)$ $1595(2)$ $C(10)$ $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-2244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(14)$ $2810(2)$ $-137(2)$ $31(1)$ $H(4)$ $296(2)$ $-87(2)$ $347(1)$ $H(6)$ $383(2)$ $-500(2)$ $308(2)$ $H(62)$ $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $1142$ $-510(3)$ $89(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(12)$ $89(2)$ $-733(3)$ $118(2)$ $H(14)$ $19(2)$ $-73(3)$ $171(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(121)$ $89(2)$ $-209(3)$ $171(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(123)$ <t< td=""><td>C(5)</td><td>3462(2)</td><td>-3195(2)</td><td>3091(1)</td></t<>                                          | C(5)   | 3462(2)  | -3195(2)  | 3091(1)  |
| C(8) $3761(2)$ $-3432(2)$ $1037(2)$ C(8) $3311(2)$ $-2295(2)$ $1499(1)$ C(9) $2332(3)$ $-4971(3)$ $1595(2)$ C(10) $4283(3)$ $-5647(3)$ $1218(2)$ C(11) $1323(2)$ $-1277(3)$ $3084(2)$ C(12) $589(3)$ $-1485(4)$ $2181(3)$ C(13) $855(3)$ $-244(5)$ $3696(3)$ C(14) $2810(2)$ $1228(2)$ $2618(2)$ C(15) $1898(3)$ $935(3)$ $-305(2)$ C(16) $899(3)$ $1281(3)$ $203(2)$ H(1) $326(2)$ $-137(2)$ $31(1)$ H(4) $296(2)$ $-87(2)$ $347(1)$ H(61) $383(2)$ $-500(2)$ $308(2)$ H(62) $474(2)$ $-420(2)$ $268(2)$ H(81) $348(2)$ $-349(2)$ $42(2)$ H(82) $455(2)$ $-331(2)$ $93(2)$ H(91) $220(2)$ $-569(3)$ $197(2)$ H(92) $184(2)$ $-428(2)$ $188(2)$ H(93) $211(2)$ $-510(3)$ $89(2)$ H(101) $420(2)$ $-636(2)$ $160(2)$ H(102) $505(3)$ $-539(3)$ $118(2)$ H(103) $406(2)$ $-73(3)$ $178(2)$ H(121) $89(2)$ $-209(3)$ $171(2)$ H(122) $57(2)$ $-73(3)$ $178(2)$ H(131) $133(3)$ $-5(3)$ $426(3)$ H(132) $19(3)$ $-53(3)$ $397(2)$ H(133) $76(3)$ $46(3)$ $334(2)$                                                                                                                                                       | C(6)   | 3981 (2) | -4327(2)  | 2668(2)  |
| $C_{(8a)}$ $3311(2)$ $-2295(2)$ $1499(1)$ $C_{(9)}$ $2332(3)$ $-4971(3)$ $1595(2)$ $C_{(10)}$ $4283(3)$ $-5647(3)$ $1218(2)$ $C_{(11)}$ $1323(2)$ $-1277(3)$ $3084(2)$ $C_{(12)}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{(12)}$ $589(3)$ $-1485(4)$ $2181(3)$ $C_{(13)}$ $855(3)$ $-244(5)$ $3696(3)$ $C_{(14)}$ $2810(2)$ $1228(2)$ $2618(2)$ $C_{(15)}$ $1898(3)$ $935(3)$ $-305(2)$ $C_{(16)}$ $899(3)$ $1281(3)$ $203(2)$ $H_{(1)}$ $326(2)$ $-137(2)$ $31(1)$ $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(61)}$ $383(2)$ $-500(2)$ $308(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(92)}$ $184(2)$ $-428(2)$ $188(2)$ $H_{(93)}$ $211(2)$ $-510(3)$ $89(2)$ $H_{(101)}$ $420(2)$ $-636(2)$ $160(2)$ $H_{(122)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(123)}$ $406(2)$ $-73(3)$ $178(2)$ $H_{(124)}$ $57(2)$ $-73(3)$ $178(2)$ $H_{(123)}$ $-4(3)$ $-173(3)$ $235(2)$ $H_{(131)}$ $133(3)$ $-5(3)$ $397(2)$ $H_{(132)}$ <t< td=""><td>C(7)</td><td>3584(2)</td><td>-4598(2)</td><td>1628(1)</td></t<> | C(7)   | 3584(2)  | -4598(2)  | 1628(1)  |
| C(9)2332(3) $-4971(3)$ $1595(2)$ $C(10)$ 4283(3) $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(16)$ $899(3)$ $1281(3)$ $203(2)$ $H(1)$ $326(2)$ $-137(2)$ $31(1)$ $H(4)$ $296(2)$ $-87(2)$ $347(1)$ $H(61)$ $383(2)$ $-500(2)$ $308(2)$ $H(82)$ $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(100)$ $420(2)$ $-636(2)$ $160(2)$ $H(101)$ $420(2)$ $-533(2)$ $57(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-73(3)$ $178(2)$ $H(11)$ $129(2)$ $-73(3)$ $178(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(131)$ $133(3)$ $-5(3)$ $324(2)$ $H(131)$ $133(3)$ $-5(3)$ $324(2)$ $H(132)$ $19(3)$ $-53(3)$ $334(2)$ $H(133)$ $76(3)$ <td>C(8)</td> <td>3761 (2)</td> <td></td> <td>1037(2)</td>                                                                    | C(8)   | 3761 (2) |           | 1037(2)  |
| C(10) $4283(3)$ $-5647(3)$ $1218(2)$ $C(11)$ $1323(2)$ $-1277(3)$ $3084(2)$ $C(12)$ $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(16)$ $899(3)$ $1281(3)$ $203(2)$ $H(1)$ $326(2)$ $-137(2)$ $31(1)$ $H(4)$ $296(2)$ $-87(2)$ $347(1)$ $H(61)$ $383(2)$ $-500(2)$ $308(2)$ $H(62)$ $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(100)$ $420(2)$ $-636(2)$ $160(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-583(2)$ $57(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(123)$ $-4(3)$ $-173(3)$ $235(2)$ $H(131)$ $133(3)$ $-5(3)$ $426(3)$ $H(132)$ $19(3)$ $-53(3)$ $397(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$ $H(151)$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                               | C(8a)  | 3311(2)  | -2295(2)  | 1499(1)  |
| C(11)1323(2) $-1277(3)$ 3084(2) $C(12)$ 589(3) $-1485(4)$ 2181(3) $C(13)$ 855(3) $-244(5)$ 3696(3) $C(14)$ 2810(2)1228(2)2618(2) $C(15)$ 1898(3)935(3) $-305(2)$ $C(16)$ 899(3)1281(3)203(2) $H(1)$ 326(2) $-137(2)$ 31(1) $H(4)$ 296(2) $-87(2)$ 347(1) $H(61)$ 383(2) $-500(2)$ 308(2) $H(62)$ 474(2) $-420(2)$ 268(2) $H(81)$ 348(2) $-349(2)$ 42(2) $H(82)$ 455(2) $-331(2)$ 93(2) $H(91)$ 220(2) $-569(3)$ 197(2) $H(92)$ 184(2) $-428(2)$ 188(2) $H(93)$ 211(2) $-510(3)$ 89(2) $H(102)$ 505(3) $-539(3)$ 118(2) $H(103)$ 406(2) $-583(2)$ 57(2) $H(11)$ 129(2) $-199(2)$ 346(2) $H(12)$ 89(2) $-209(3)$ 171(2) $H(12)$ $89(2)$ $-73(3)$ 178(2) $H(12)$ $133(3)$ $-5(3)$ 325(2) $H(131)$ 133(3) $-5(3)$ 334(2) $H(133)$ $76(3)$ 46(3)334(2) $H(133)$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                 | C(9)   | 2332(3)  | -4971 (3) | 1595(2)  |
| C(12) $589(3)$ $-1485(4)$ $2181(3)$ $C(13)$ $855(3)$ $-244(5)$ $3696(3)$ $C(14)$ $2810(2)$ $1228(2)$ $2618(2)$ $C(15)$ $1898(3)$ $935(3)$ $-305(2)$ $C(16)$ $899(3)$ $1281(3)$ $203(2)$ $H(1)$ $326(2)$ $-137(2)$ $31(1)$ $H(4)$ $296(2)$ $-87(2)$ $347(1)$ $H(61)$ $383(2)$ $-500(2)$ $308(2)$ $H(62)$ $474(2)$ $-420(2)$ $268(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(101)$ $420(2)$ $-636(2)$ $160(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-583(2)$ $57(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(12)$ $89(2)$ $-209(3)$ $171(2)$ $H(12)$ $89(2)$ $-209(3)$ $171(2)$ $H(123)$ $-4(3)$ $-173(3)$ $235(2)$ $H(131)$ $133(3)$ $-5(3)$ $397(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$                                                                                                                                                                                                                             | C(10)  | 4283(3)  | -5647(3)  | 1218(2)  |
| C(13)855(3)-244(5)3696(3)C(14)2810(2)1228(2)2618(2)C(15)1898(3)935(3)-305(2)C(16)899(3)1281(3)203(2)H(1)326(2)-137(2)31(1)H(4)296(2)-87(2)347(1)H(61)383(2)-500(2)308(2)H(62)474(2)-420(2)268(2)H(81)348(2)-349(2)42(2)H(82)455(2)-331(2)93(2)H(91)220(2)-569(3)197(2)H(92)184(2)-428(2)188(2)H(93)211(2)-510(3)89(2)H(101)420(2)-636(2)160(2)H(102)505(3)-539(3)118(2)H(103)406(2)-583(2)57(2)H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(11)  | 1323(2)  | -1277(3)  | 3084(2)  |
| $C_{(14)}$ $2810(2)$ $1228(2)$ $2618(2)$ $C_{(15)}$ $1898(3)$ $935(3)$ $-305(2)$ $C_{(16)}$ $899(3)$ $1281(3)$ $203(2)$ $H_{(1)}$ $326(2)$ $-137(2)$ $31(1)$ $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(61)}$ $383(2)$ $-500(2)$ $308(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(91)}$ $220(2)$ $-569(3)$ $197(2)$ $H_{(92)}$ $184(2)$ $-428(2)$ $188(2)$ $H_{(93)}$ $211(2)$ $-510(3)$ $89(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(103)}$ $406(2)$ $-583(2)$ $57(2)$ $H_{(11)}$ $129(2)$ $-199(2)$ $346(2)$ $H_{(12)}$ $57(2)$ $-73(3)$ $171(2)$ $H_{(12)}$ $57(2)$ $-73(3)$ $178(2)$ $H_{(13)}$ $133(3)$ $-5(3)$ $325(2)$ $H_{(131)}$ $133(3)$ $-53(3)$ $397(2)$ $H_{(133)}$ $76(3)$ $46(3)$ $334(2)$ $H_{(151)}$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                          | C(12)  | 589(3)   | -1485(4)  | 2181 (3) |
| C<br>(15)1898(3)935(3) $-305(2)$ C(15)899(3)1281(3)203(2)H(1)326(2) $-137(2)$ 31(1)H(4)296(2) $-87(2)$ 347(1)H(61)383(2) $-500(2)$ 308(2)H(62)474(2) $-420(2)$ 268(2)H(81)348(2) $-349(2)$ 42(2)H(82)455(2) $-331(2)$ 93(2)H(91)220(2) $-569(3)$ 197(2)H(92)184(2) $-428(2)$ 188(2)H(93)211(2) $-510(3)$ 89(2)H(101)420(2) $-636(2)$ 160(2)H(102)505(3) $-539(3)$ 118(2)H(103)406(2) $-583(2)$ 57(2)H(11)129(2) $-199(2)$ 346(2)H(12) $57(2)$ $-73(3)$ 171(2)H(12) $-4(3)$ $-173(3)$ 235(2)H(131)133(3) $-5(3)$ 426(3)H(132)19(3) $-53(3)$ 397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2) $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(13)  | 855(3)   | -244(5)   | 3696(3)  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(14)  | 2810(2)  | 1228(2)   | 2618(2)  |
| $H_{(1)}$ $326(2)$ $-137(2)$ $31(1)$ $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(61)}$ $383(2)$ $-500(2)$ $308(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(91)}$ $220(2)$ $-569(3)$ $197(2)$ $H_{(92)}$ $184(2)$ $-428(2)$ $188(2)$ $H_{(93)}$ $211(2)$ $-510(3)$ $89(2)$ $H_{(101)}$ $420(2)$ $-636(2)$ $160(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(102)}$ $406(2)$ $-583(2)$ $57(2)$ $H_{(11)}$ $129(2)$ $-199(2)$ $346(2)$ $H_{(121)}$ $89(2)$ $-209(3)$ $171(2)$ $H_{(122)}$ $57(2)$ $-73(3)$ $178(2)$ $H_{(121)}$ $133(3)$ $-5(3)$ $426(3)$ $H_{(131)}$ $133(3)$ $-53(3)$ $397(2)$ $H_{(132)}$ $19(3)$ $-53(3)$ $334(2)$ $H_{(133)}$ $76(3)$ $46(3)$ $334(2)$ $H_{(151)}$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                       | C(15)  | 1898(3)  | 935(3)    | -305(2)  |
| $H_{(4)}$ $296(2)$ $-87(2)$ $347(1)$ $H_{(61)}$ $383(2)$ $-500(2)$ $308(2)$ $H_{(62)}$ $474(2)$ $-420(2)$ $268(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(81)}$ $348(2)$ $-349(2)$ $42(2)$ $H_{(82)}$ $455(2)$ $-331(2)$ $93(2)$ $H_{(91)}$ $220(2)$ $-569(3)$ $197(2)$ $H_{(92)}$ $184(2)$ $-428(2)$ $188(2)$ $H_{(93)}$ $211(2)$ $-510(3)$ $89(2)$ $H_{(101)}$ $420(2)$ $-636(2)$ $160(2)$ $H_{(102)}$ $505(3)$ $-539(3)$ $118(2)$ $H_{(103)}$ $406(2)$ $-583(2)$ $57(2)$ $H_{(11)}$ $129(2)$ $-199(2)$ $346(2)$ $H_{(121)}$ $89(2)$ $-209(3)$ $171(2)$ $H_{(122)}$ $57(2)$ $-73(3)$ $178(2)$ $H_{(123)}$ $-4(3)$ $-173(3)$ $235(2)$ $H_{(131)}$ $133(3)$ $-5(3)$ $397(2)$ $H_{(132)}$ $19(3)$ $-53(3)$ $334(2)$ $H_{(133)}$ $76(3)$ $46(3)$ $334(2)$ $H_{(151)}$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                    | C(16)  |          | 1281 (3)  | 203(2)   |
| H(61) $383(2)$ $-500(2)$ $308(2)$ $H(62)$ $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(101)$ $420(2)$ $-636(2)$ $160(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-583(2)$ $57(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(121)$ $89(2)$ $-209(3)$ $171(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(123)$ $-4(3)$ $-173(3)$ $235(2)$ $H(131)$ $133(3)$ $-5(3)$ $426(3)$ $H(132)$ $19(3)$ $-53(3)$ $397(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$ $H(151)$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 326(2)   | -137(2)   | 31(1)    |
| H(62) $474(2)$ $-420(2)$ $268(2)$ $H(81)$ $348(2)$ $-349(2)$ $42(2)$ $H(82)$ $455(2)$ $-331(2)$ $93(2)$ $H(91)$ $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(101)$ $420(2)$ $-636(2)$ $160(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-583(2)$ $57(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(121)$ $89(2)$ $-209(3)$ $171(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(123)$ $-4(3)$ $-173(3)$ $235(2)$ $H(131)$ $133(3)$ $-5(3)$ $426(3)$ $H(132)$ $19(3)$ $-53(3)$ $397(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$ $H(151)$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 296(2)   | -87(2)    | 347(1)   |
| H(81) $348(2)$ $-349(2)$ $42(2)$ H(82) $455(2)$ $-331(2)$ $93(2)$ H(91) $220(2)$ $-569(3)$ $197(2)$ H(92) $184(2)$ $-428(2)$ $188(2)$ H(93) $211(2)$ $-510(3)$ $89(2)$ H(101) $420(2)$ $-636(2)$ $160(2)$ H(102) $505(3)$ $-539(3)$ $118(2)$ H(103) $406(2)$ $-583(2)$ $57(2)$ H(11) $129(2)$ $-199(2)$ $346(2)$ H(121) $89(2)$ $-209(3)$ $171(2)$ H(122) $57(2)$ $-73(3)$ $178(2)$ H(123) $-4(3)$ $-173(3)$ $235(2)$ H(131) $133(3)$ $-5(3)$ $426(3)$ H(132) $19(3)$ $-53(3)$ $397(2)$ H(133) $76(3)$ $46(3)$ $334(2)$ H(151) $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H(61)  | 383(2)   | -500(2)   | 308(2)   |
| H(82) $455(2)$ $-331(2)$ $93(2)$ H(91)220(2) $-569(3)$ $197(2)$ H(92) $184(2)$ $-428(2)$ $188(2)$ H(93)211(2) $-510(3)$ $89(2)$ H(101) $420(2)$ $-636(2)$ $160(2)$ H(102) $505(3)$ $-539(3)$ $118(2)$ H(103) $406(2)$ $-583(2)$ $57(2)$ H(11) $129(2)$ $-199(2)$ $346(2)$ H(121) $89(2)$ $-209(3)$ $171(2)$ H(122) $57(2)$ $-73(3)$ $178(2)$ H(123) $-4(3)$ $-173(3)$ $235(2)$ H(131) $133(3)$ $-5(3)$ $426(3)$ H(132) $19(3)$ $-53(3)$ $397(2)$ H(133) $76(3)$ $46(3)$ $334(2)$ H(151) $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H(62)  | 474(2)   | -420(2)   | 268(2)   |
| H(91) $220(2)$ $-569(3)$ $197(2)$ $H(92)$ $184(2)$ $-428(2)$ $188(2)$ $H(93)$ $211(2)$ $-510(3)$ $89(2)$ $H(101)$ $420(2)$ $-636(2)$ $160(2)$ $H(102)$ $505(3)$ $-539(3)$ $118(2)$ $H(103)$ $406(2)$ $-583(2)$ $57(2)$ $H(11)$ $129(2)$ $-199(2)$ $346(2)$ $H(121)$ $89(2)$ $-209(3)$ $171(2)$ $H(122)$ $57(2)$ $-73(3)$ $178(2)$ $H(123)$ $-4(3)$ $-173(3)$ $235(2)$ $H(131)$ $133(3)$ $-5(3)$ $426(3)$ $H(132)$ $19(3)$ $-53(3)$ $397(2)$ $H(133)$ $76(3)$ $46(3)$ $334(2)$ $H(151)$ $176(2)$ $7(2)$ $-51(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H(81)  |          | -349(2)   | 42(2)    |
| H(92)184(2)-428(2)188(2)H(93)211(2)-510(3)89(2)H(101)420(2)-636(2)160(2)H(102)505(3)-539(3)118(2)H(103)406(2)-583(2)57(2)H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171(2)H(122)57(2)-73(3)178(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(82)  | 455(2)   | -331 (2)  | 93 (2)   |
| H(93)211 (2)-510 (3)89(2)H(101)420 (2)-636 (2)160 (2)H(102)505 (3)-539 (3)118 (2)H(103)406 (2)-583 (2)57 (2)H(11)129 (2)-199 (2)346 (2)H(121)89 (2)-209 (3)171 (2)H(122)57 (2)-73 (3)178 (2)H(123)-4 (3)-173 (3)235 (2)H(131)133 (3)-5 (3)426 (3)H(132)19 (3)-53 (3)397 (2)H(133)76 (3)46 (3)334 (2)H(151)176 (2)7 (2)-51 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H(91)  | 220(2)   | -569(3)   | 197(2)   |
| H(101)420(2)-636(2)160(2)H(102)505(3)-539(3)118(2)H(103)406(2)-583(2)57(2)H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171(2)H(122)57(2)-73(3)178(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 184(2)   |           | 188(2)   |
| H(102)505(3)-539(3)118(2)H(103)406(2)-583(2)57(2)H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171(2)H(122)57(2)-73(3)178(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          | -510(3)   | 89(2)    |
| H(103)406(2)-583(2)57(2)H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171(2)H(122)57(2)-73(3)178(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          | -636(2)   | 160(2)   |
| H(11)129(2)-199(2)346(2)H(121)89(2)-209(3)171 (2)H(122)57 (2)-73 (3)178 (2)H(123)-4 (3)-173 (3)235 (2)H(131)133 (3)-5 (3)426 (3)H(132)19 (3)-53 (3)397 (2)H(133)76 (3)46 (3)334 (2)H(151)176 (2)7 (2)-51 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 505(3)   | -539(3)   | 118(2)   |
| H(121)89(2)-209(3)171(2)H(122)57(2)-73(3)178(2)H(123)-4(3)-173(3)235(2)H(131)133(3)-5(3)426(3)H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          | -583(2)   | 57(2)    |
| H(122)57 (2)-73 (3)178 (2)H(123)-4 (3)-173 (3)235 (2)H(131)133 (3)-5 (3)426 (3)H(132)19 (3)-53 (3)397 (2)H(133)76 (3)46 (3)334 (2)H(151)176 (2)7 (2)-51 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H(11)  | 129(2)   | -199(2)   | 346(2)   |
| H(123) -4(3) -173(3) 235(2)   H(131) 133(3) -5(3) 426(3)   H(132) 19(3) -53(3) 397(2)   H(133) 76(3) 46(3) 334(2)   H(151) 176(2) 7(2) -51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H(121) |          | -209(3)   | 171 (2)  |
| H(131) 133(3) -5(3) 426(3)   H(132) 19(3) -53(3) 397(2)   H(133) 76(3) 46(3) 334(2)   H(151) 176(2) 7(2) -51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |           |          |
| H(132)19(3)-53(3)397(2)H(133)76(3)46(3)334(2)H(151)176(2)7(2)-51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | (        |           |          |
| H(133) 76(3) 46(3) 334(2)   H(151) 176(2) 7(2) -51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |           |          |
| H(151) 176(2) 7(2) -51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H(132) | 1        |           | 397 (2)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H(133) | 76(3)    | 46(3)     | 334(2)   |
| H <sub>(152)</sub> 201 (2) 144 (2) -79 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H(151) |          |           |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H(152) | 201 (2)  | 144(2)    | -79(2)   |

TABLE 5. Atomic Coordinates ( $\times 10^4$ ; for H,  $\times 10^9$ ) in IXa Molecule

**Crystals of Compound IXa** are monoclinic, at 20°C: a = 11.797(4), b = 10.860(2), c = 13.871(4) Å,  $\beta = 92.38(2)^\circ$ , V = 1776(1) Å<sup>3</sup>,  $d_{calc} = 1.185$  g/cm<sup>3</sup>, Z = 4, space group P2<sub>1</sub>/c. The cell parameters and the intensities of 4207 independent reflections were measured on a Siemens P3/PC four-circle automatic diffractometer ( $\lambda$ MoK $\alpha$ , graphite monochromator,  $\theta/2\theta$  scanning to  $\theta_{max} = 27^\circ$ ). The structure was deciphered by the direct method, determining all the nonhydrogen atoms, and refined by full-matrix least-squares in the anisotropic approximation for the nonhydrogen atoms from 2778 reflections with  $I > 3\sigma$  (I). All the hydrogen atoms were objectively determined by Fourier difference syntheses and refined isotropically. The final values of the R factors were R = 0.043,  $R_w = 0.043$  (S = 0.616). All the calculations were done using the SHELXTL PLUS program [9] (PC version). The coordinates of the atoms are given in Table 5 (the thermal parameters of the atoms can be obtained from the authors).

2-Alkylthio-7,7-dimethyl-5-oxo-4-R-3-cyano-1,4,5,6,7,8-hexahydroquinolines (IXa-f). A. A mixture of 1.40 g (10 mmoles) dimedone I, 10 mmoles aldehyde IIa, b, 1.00 g (10 mmoles) 2-cyanothioacetamide III, and 1.2 ml N-methylmorpholine in 20 ml ethanol was stirred at 20°C for 4 h. Then 10 mmoles alkyl halide VIIIa-e was added and this was stirred for 3 h. The precipitate formed was filtered off and washed successively with water, ethanol, and hexane. Obtained: compounds IXa-f (Tables 1, 2).

**B.** A 5.6 ml portion of 10% aqueous KOH solution and 10 mmoles alkyl halide VIIIa-c were added with stirring to a solution of 2.76 g (10 mmoles) thione X in 8 ml DMF. Then this was stirred at 25°C for 3 h. The precipitate formed was separated and then washed successively with water, ethanol, and hexane. Obtained: compounds IXa, b, f, similar in melting point and IR spectra to the compounds synthesized by method A.

4-Isopropyl-7,7-dimethyl-5-oxo-3-cyano-3,4,5,6,7,8-hexahydroquinoline-2-(1H)-thione (X). A mixture of 1.40 g (10 mmoles) dimedone I, 0.72 g (10 mmoles) aldehyde IIb, 1.00 g (10 mmoles) 2-cyanothioacetamide III, and 1.2 ml N-methylmorpholine in 20 ml ethanol was stirred at 25°C for 4 h. Then 4.5 ml 10% solution of hydrochloric acid was added and it was stirred for 30 min. The precipitate formed was filtered off and washed with ethanol. Obtained: compound X (Tables 1, 2).

2-Amino-4-R-7,7-dimethyl-5-oxo-3-cyano-5,6,7,8-tetrahydro-4H-benzo[b]pyrans (XVIa, b). A mixture of 1.40 g (10 mmoles) dimedone I, 10 mmoles aldehyde IIa, b, 0.66 g (10 mmoles) malonodinitrile XII, and 0.1 ml N-methylmorpholine in 20 ml ethanol was stirred at 25°C for 5 h. The precipitate formed was filtered off and washed with ethanol. Obtained: compounds XVIa, b (Tables 1, 2).

This work was done with the financial support of the Russian Foundation for Basic Research (project No. 96-03-32012a).

## REFERENCES

- 1. V. P. Litvinov, V. K. Promonenkov, Yu. A. Sharanin, and A. M. Shestopalov, Results of Science and Technology, Organic Chemistry Series [in Russian], Vol. 17, VINITI, Moscow (1989), p. 72.
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shetsopalov, and S. Senning, Sulfur Reports, 13, 1 (1992).
- 3. V. P. Litvinov, Phosphorus, Sulfur and Silicon, 74, 139 (1993).
- 4. Yu. A. Sharanin, A. M. Shestopalov, V. P. Litvinov, V. Yu. Mortikov, L. A. Rodinovskaya, M. P. Goncharenko, and V. K. Promonenkov, Zh. Org. Khim., 22, 1962 (1986).
- 5. M. P. Goncharenko, Yu. A. Sharanin, A. M. Shestopalov, V. P. Litvinov, and A. V. Turov, Zh. Org. Khim., 26, 1578 (1990).
- 6. V. N. Nesterov, V. E. Shklover, Yu. T. Struchkov, Yu. A. Sharanin, A. M. Shestopalov, and L. A. Rodinovskaya, Acta Crystallogr., 41, 1191 (1985).
- 7. A. Bondi, J. Phys. Chem., 70, 3006 (1966).
- 8. V. D. Dyachenko, S. G. Krivokolysko, V. N. Nesterov, and V. P. Litvinov, Khim. Geterotsikl. Soedin., No. 9, 1243 (1996).
- 9. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. II, No. 12, S1 (1987).
- 10. W. Robinson and G. M. Sheldrick, Crystallographic Computing: Techniques and New Technologies, Oxford University Press, Oxford (1988), p. 366.