ORIGINAL PAPER

An efficient and convenient protocol for the synthesis of novel 1'H-spiro[isoindoline-1,2'-quinazoline]-3,4'(3'H)-dione derivatives

M. Dabiri · Ali A. Mohammadi · Hassan Qaraat

Received: 27 June 2008/Accepted: 7 July 2008/Published online: 3 September 2008 © Springer-Verlag 2008

Abstract An efficient and direct procedure for the synthesis of novel spiro[isoindoline-1,2'-quinazoline]-3,4' (3'H)-dione derivatives is described. The process employs a condensation reaction of 2-aminobenzamides and isatins in the presence of a catalytic amount of KAl(SO₄)₂.12H₂O (alum) in ethanol under reflux.

Keywords Quinazoline \cdot 2-aminobenzamides \cdot Isatin \cdot KAl(SO₄)₂.12H₂O (alum) \cdot Microwave irradiation

Introduction

2,3-Dihydroquinazoline-4(3*H*)-ones and oxindole derivatives are an important class of heterocyclic compounds. 2,3-Dihydroquinazolin-4(3*H*)-ones possess a broad spectrum of biological and pharmaceutical activities, such as analgesic [1], antitumor [2], anticancer [3], diuretic [4], and herbicidal activities [5]. In addition, these compounds can easily be oxidized to their quinazolin-4(3*H*)-one analogs [6], which also include important pharmacologically active compounds [7, 8]. Several methods have been reported for the synthesis of 2,3-dihydroquinazolinones [8–13].

Oxindoles are useful as antibacterial, antiinflammatory [14] and laxative agents [15]. Furthermore, these heterocycle compounds have recently been isolated from plants. For example, the marine alkaloid convolutamydine A,

A. A. Mohammadi e-mail: a-mohammadi@sbu.ac.ir isolated from the marine bryozoan *Amathia convoluta*, was found to show potent activity in the differentiation of HL-60 human promyelocytic leukemia cells [16]. The synthetic precursors to this type of alkaloid are also isatin derivatives [17].

Oxindole derivatives have been prepared by the reaction of isatins with aromatics in triflic acid [18], the reaction of isatins with diphenyl urea and AlCl₃ [19], the reaction of isatins with barbituric acid [20], and by other routes [21, 22].

Results and discussion

Very recently, we have reported the preparation of 2,3dihydroquinazoline-4(3*H*)-ones [23] and oxindoles [24]. Along these lines, we designed the synthesis of 1'*H*spiro[isoindoline-1,2'-quinazoline]-3,4'(3'*H*)-dione. To this end, the use of a KAl(SO₄)₂.12H₂O (alum), which is relatively nontoxic and inexpensive, is the focus of our study [25–28]. In the course of our research on the applications of KAl(SO₄)₂.12H₂O in organic reactions, we have found that alum is an effective promoter in the preparation of 1'*H*spiro[isoindoline-1,2'-quinazoline]-3,4'(3'*H*)-dione.

The 2-aminobenzamides **3a**–g necessary for this investigation were prepared according to [29]; their physical properties were in accordance with those described in [30].

When a mixture of 2-amino-*N*-phenylbenzamide (**3a**) and isatin (**4a**) in ethanol was stirred at reflux in the presence of a catalytic amount of alum, the reaction was completed within 7 h (until **4a** disappeared, as shown by TLC analysis). Workup of the reaction mixture prepared **5a** in 91% yield (Scheme 1).

Encouraged by this success, we extended this reaction of 2-aminobenzamides **3b–g** with a range of other isatins **4a**

M. Dabiri (⊠) · A. A. Mohammadi (⊠) · H. Qaraat Department of Chemistry, Faculty of Science, Shahid Beheshti University, P.O. Box 19395-4716, Tehran, Iran e-mail: m-dabiri@sbu.ac.ir

and **b** under similar conditions, furnishing the respective 1'H-spiro[isoindoline-1,2'-quinazoline]-3,4'(3'H)-dione **5b–h** with good yields. The optimized results are summarized in Scheme 1. All products were characterized by their ¹H, ¹³C NMR, IR and MS spectral data.

In conclusion, a novel and efficient method for the condensation of 2-aminobenzamides with isatin derivatives into 1'H-spiro[isoindoline-1,2'-quinazoline]-3,4'(3'H)-diones was developed. The novelty and synthetic usefulness of this methodology was demonstrated by the efficient synthesis of some novel and interesting dihydroquinazo-line-4(3H)-ones or oxindoles.

Experimental

Melting points were obtained in open capillary tubes and were measured on an Electrothermal (Southend, UK) 9200 apparatus. Mass spectra were recorded on a Shimadzu (Tokyo, Japan) QP 1100 BX mass spectrometer. The IR spectra were recorded on KBr pellets on a Shimadzu IR-470 spectrophotometer. ¹H and ¹³C NMR spectra were determined on a Bruker (Rheinstetten, Germany) 300 DRX Avance instrument at 300 and 75 MHz. Elemental analysis for C, H and N were performed using a Heraus (Banau, Germany) CHN rapid analyzer.

General procedure for preparation of 1'Hspiro[isoindoline-1,2'-quinazoline]-3,4'(3'H)-dione

A mixture of 1 mmol **3**, 1 mmol isatin **4**, 0.4 g alum and 5 cm³ EtOH in a 20 cm³ flask was stirred at reflux for the time period indicated in Scheme 1. After the reaction had completed (monitored by TLC, ethyl acetate/*n*-hexane, 1/1), EtOH was removed under reduced pressure, 25 cm³ H₂O was added to the reaction mixture, the resulting solid was separated by filtration and recrystallized from ethanol to afford pure product.

1'H-Spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (5a, $C_{22}H_{18}N_2S$)

Cream powder; mp 261–263 °C dec.; IR (KBr) $\overline{\nu} = 3,491$ (NH), 3,227(NH), 2,964, 1,725 (C=O), 1,642 (C=O), 1,614, 1,526 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 6.60$ (d, 1H, J = 8.0, ArH), 6.68(t, 1H, J = 7.4, ArH), 6.84 (d, 1H, J = 7.7, ArH), 7.05 (t, 1H, J = 7.4, ArH), 7.22 (t, 1H, J = 7.2, ArH), 7.28 (s, 1H, NH), 7.33 (t, 1H, J = 7.8, ArH), 7.47 (d, 1H, J = 7.3, ArH), 7.59 (d, 1H, J = 7.4, ArH), 8.36 (s, 1H, NH), 10.30 (s, 1H, NH) ppm; ¹³C NMR (*DMSO-d₆*) $\delta = 71.41$, 110.53, 114.31, 114.76, 117.61, 122.73, 125.81, 127.30, 129.89, 131.26, 133.75, 142.58, 147.28, 164.40, and 176.47 ppm; MS: m/z (%) = 265 (M⁺, 25), 263 (50), 237 (100), 119 (95), 92 (60), 63 (35), 50 (30), 39 (40); anal. calcd. for C₁₅H₁₁N₃O₂: C, 67.92; H, 4.18; N, 15.84; found: C, 67.80; H, 4.11; N, 15.73.

3'-Phenyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)dione (**5b**, $C_{21}H_{15}N_3O_2$)

Yellow powder; mp 251–253 °C dec.; IR (KBr) $\overline{\nu} = 3,428$ (NH), 3,265 (NH), 2,916, 1,727 (C=O), 1,642 (C=O), 1,616 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 6.63$ (d, 1H, J = 7.7, ArH), 6.70–6.78 (m, 2H, ArH), 6.92 (t, 1H, J = 7.4, ArH), 6.98 (d, 2H, J = 7.0, ArH), 7.12–7.23 (m, 4H, ArH), 7.30 (t, 1H, J = 7.0, ArH), 7.53 (d, 1H, J = 7.3, ArH), 7.63 (s, 1H, NH), 7.66 (d, 1H, J = 7.0, ArH), 10.42 (s, 1H, NH) ppm; ¹³C NMR δ (*DMSO-d₆*) $\delta = 76.85$, 110.57, 114.57, 115.04, 118.17, 122.59, 126.96, 127.75, 127.90, 128.10, 129.11, 129.74, 131.29, 134.16, 138.55, 142.12, 146.58, 164.08, and 175.96 ppm; MS: *m/z* (%) = 341 (M⁺, 5), 313 (100), 269 (15), 249 (15), 221 (25), 194 (25), 167 (15), 120 (60), 92 (30), 77 (80), 63 (35), 51 (50), 39 (40); anal. calcd. for C₂₁H₁₅N₃O₂: C, 73.89; H, 4.43; N, 12.31; found: C, 73.80; H, 4.32; N, 12.25.

3'-p-Tolyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)dione (5c, $C_{22}H_{17}N_3O_2$)

Cream powder; mp 271–273 °C dec.; IR (KBr) $\overline{v} = 3,420$ (NH), 3,258 (NH), 2,964, 1,708 (C=O), 1,644 (C=O), 1,613, 1,503 cm⁻¹; ¹H NMR (*DMSO-d*₆) δ = 2.17 (s, 3H, CH₃), 6.63–6.77 (m, 3H, ArH), 6.85 (d, 2H, J = 8.2, ArH), 6.93 (d, 2H, J = 7.5, ArH), 6.99 (d, 2H, J = 8.2, ArH), 7.15 (t, 1H, J = 7.2, ArH), 7.29 (t, 1H, J = 7.0, ArH), 7.53 (d, 1H, J = 7.3, ArH), 7.60 (s, 1H, NH), 7.64 (d, 1H, J = 7.0, ArH), 10.40 (s, 1H, NH) ppm; ¹³C NMR $(DMSO-d_6)$ $\delta = 21.00, 76.86, 110.59, 114.51, 115.04,$ 118.09, 122.60, 126.90, 127.88, 127.96, 129.65, 131.26, 134.08, 135.91, 137.30, 142.10, 146.56, 164.12, and 175.96 ppm; MS: m/z (%) = 355 (M⁺, 5), 353 (15), 327 (100), 249 (15), 235 (25), 208 (25), 120 (50), 91 (35), 77 (20), 65 (45), 51 (30), 39 (30); anal. calcd. for C₂₂H₁₇N₃O₂: C, 74.35; H, 4.82; N, 11.82; found: C, 74.24; H, 4.73; N, 11.74.

3'-(4-Methoxyphenyl)-1'H-spiro[indoline-3,2'-quinazo-line]-2,4'(3'H)-dione (5d, $C_{22}H_{17}N_3O_3$)

Cream powder; mp 269–271 °C dec.; IR (KBr) $\overline{v} = 3,426$ (NH), 3,287(NH), 2,964, 1,726 (C=O), 1,638 (C=O), 1,612, 1,510 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 3.64$ (s, 3H, OCH₃), 6.67–6.75 (m, 5H, ArH), 6.89–9.91 (m, 3H, ArH), 7.16–7.29 (m, 2H, ArH), 7.55 (s, 1H, NH), 7.59–7.68 (m, 2H, ArH), 10.40 (s, 1H, NH) ppm; ¹³C NMR (*DMSO-d₆*) $\delta = 55.54$, 77.03, 110.59, 114.23, 114.50, 115.01, 118.09, 122.63, 126.85, 127.92, 128.08, 131.02, 131.23, 134.08, 142.08, 146.59, 158.61, 164.27, and 175.97 ppm; MS: *m/z* (%) = 371 (M⁺, 5), 369 (15), 343 (100), 328 (90), 249 (35), 221 (25), 192 (25), 120 (40), 91 (45), 77 (60), 65 (45), 51 (45), 39 (50); anal. calcd. for C₂₂H₁₇N₃O₃: C, 71.15; H, 4.61; N, 11.31; found: C, 71.06; H, 4.53; N, 11.20.

3'-(4-Bromophenyl)-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (**5e**, $C_{21}H_{14}BrN_3O_2$)

Yellow powder; mp 213–215 °C dec.; IR (KBr) $\overline{\nu} = 3,429$ (NH), 3,252 (NH), 2,964, 1,725 (C=O), 1,642 (C=O), 1,614 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 6.67-6.79$ (m, 3H, ArH), 6.93-6.97 (m, 3H, ArH), 7.16 (t, 1H, J = 7.6, ArH), 7.31 (t, 1H, J = 7.2, ArH), 7.41 (d, 2H, J = 8.4, ArH), 7.56 (d, 1H, J = 7.3, ArH), 7.67 (s, 1H, NH), 7.69 (d, 1H, J = 7.0, ArH), 10.47 (s, 1H, NH) ppm; ¹³C NMR (*DMSO-d₆*) $\delta = 76.81$, 110.74, 114.65, 114.75, 118.25, 120.71, 121.24, 126.97, 127.46, 127.93, 131.53, 131.99, 132.21, 134.34, 137.91, 142.13, 146.59, 164.08, and 175.77 ppm; MS: m/z (%) = 419 (M⁺, 5), 391 (100), 301 (15), 272 (15), 249 (35), 221 (15), 194 (25), 171 (35), 155 (20), 120 (90), 92 (45), 77 (60), 63 (65), 51 (65), 39 (55); anal. calcd. for C₂₁H₁₄BrN₃O₂: C, 60.02; H, 3.36; N, 10.00; found: C, 59.03; H, 3.26; N, 9.89.

3'-(4-Chlorophenyl)-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (**5f**, $C_{21}H_{14}ClN_3O_2$)

Yellow powder; mp 264–266 °C dec.; IR (KBr) $\overline{v} = 3,427$ (NH), 3,337 (NH), 2,964, 1,739 (C=O), 1,643 (C=O), 1,608, 1,491 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 6.66-6.78$ (m, 3H, ArH), 6.92–7.02 (m, 3H, ArH), 7.16 (t, 1H, J = 7.5, ArH), 7.28–7.33 (m, 3H, ArH), 7.56 (d, 1H, J = 7.3, ArH), 7.63(d, 1H, J = 7.3, ArH), 7.66 (s, 1H, NH), 10.46 (s, 1H, NH) ppm; ¹³C NMR (*DMSO-d₆*) $\delta = 76.86$, 110.73, 114.65, 114.76, 118.24, 122.75, 126.98, 127.47, 127.93, 129.25, 131.52, 131.66, 132.66, 134.34, 137.47, 142.14, 146.60, 164.13, and 175.79 ppm; MS: m/z (%) = 375 (M⁺, 5), 347 (100), 249 (35), 228 (15), 192 (25), 166 (25), 120 (70), 92 (35), 75 (60), 63 (65), 51 (60), 39 (60); anal. calcd. for C₂₁H₁₄ClN₃O₂: C, 67.12; H, 3.75; N, 11.18; found: C, 67.01; H, 3.76; N, 11.09.

3'-Benzyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)dione (**5g**, $C_{22}H_{17}N_3O_2$)

Cream powder; mp 190–192 °C dec.; IR (KBr) $\overline{\nu} = 3,480$ (NH), 3,329 (NH), 2,924, 1,729 (C=O), 1,623 (C=O) 1,610 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 4.15-4.52$ (d,d, J = 15.3, 2H, CH₂), 6.67 (d, 1H, J = 7.9, ArH), 6.76 (t, 1H, J = 7.4, ArH), 6.81 (d, 1H, J = 7.6, ArH), 6.90–6.92 (m, 3H, ArH), 7.14–7.16 (t, 2H, ArH), 7.24–7.34 (m, 3H, ArH), 7.48 (s, 1H, NH), 7.73 (d, 1H, J = 7.5, ArH), 10.36 (s, 1H, NH) ppm; ¹³C NMR (*DMSO-d₆*) $\delta = 46.31$, 75.54, 110.91, 114.41, 115.06, 118.12, 122.41, 126.71, 126.76, 127.27, 127.82, 127.87, 128.24, 131.73, 133.86, 137.83, 142.97, 146.47, 164.53, and 175.47 ppm; MS: m/z (%) = 355 (M⁺, 5), 353 (20), 327 (100), 249 (20), 235 (25), 208 (25), 120 (50), 91 (30), 77 (30), 65 (35), 51 (20), 39 (35); anal. calcd. for C₂₂H₁₇N₃O₂: C, 74.35; H, 4.82; N, 11.82; found: C, 74.23; H, 4.71; N, 11.70.

5-Bromo-3'-p-tolyl-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (**5h**, $C_{22}H_{16}BrN_3O_2$)

Yellow powder; mp 150–152 °C dec.; IR (KBr) $\bar{\nu} = 3,450$ (NH), 3,236 (NH), 1,736 (C=O), 1,645 (C=O), 1,613, 1,512 cm⁻¹; ¹H NMR (*DMSO-d₆*) $\delta = 2.08$ (s, 3H, CH₃), 6.60 (d, 1H, J = 8.2, ArH), 6.67 (d, 1H, J = 7.7, ArH),6.74 (t, 1H, ArH),6.89 (d, 2H, J = 6.7, ArH), 7.03 (d, 1H, J = 7.8, ArH), 7.28–7.35 (m, 2H, ArH), 7.65 (m, 2H, ArH), 7.76 (s, 1H, NH), 10.55 (s, 1H, NH) ppm; ¹³C NMR δ (*DMSO-d₆*) $\delta = 21.03$, 76.87, 112.66, 114.17, 114.54, 114.98, 118.34, 127.94, 129.68, 129.81, 130.15, 134.03, 134.21, 135.69, 137.61, 141.44, 146.27, 163.91, and 175.64 ppm; MS: m/z (%) = 434 (M⁺, 10), 405 (95), 327 (25), 286 (35), 250 (15), 209 (15), 192 (25), 166 (25), 146 (20), 120 (100), 91 (85), 77 (60), 65 (95), 51 (60), 39 (70); anal. calcd. for C₂₂H₁₆BrN₃O₂: C, 60.84; H, 3.71; N, 9.68; found: C, 60.74; H, 3.62; N, 9.57.

Acknowledgments We gratefully acknowledge financial support from the Research Council of Shahid Beheshti University.

References

- Hour M, Huang L, Kuo S, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee K (2000) J Med Chem 43:4479
- Misra VS, Saxena VK, Srivastava R (1983) Indian J Pharm Sci 45:207
- 3. Kacker IK, Zaheer SH (1951) J Indian Chem Soc 28:344
- Gupta RC, Nath R, Shanker K, Bhargava KP, Kishore K (1979) J Indian Chem Soc 56:219
- 5. Parmar SS, Kumar R, Arora RC (1969) Indian J Med Res 57:245
- 6. Abdel JRJ, Volter W, Saeed M (2004) Tetrahedron Lett 45:3475
- Corbett JW, Ko SS, Rodgers JD, Gearhart LA, Magnus NA, Bachheler LT, Diamond S, Jeffey S, Trainor GL, Anderson PS, Erickson VK (2000) J Med Chem 43:2019

- Liu JF, Lee J, Dalton AM, Bi G, Yu L, Baldino CM, McElory E, Brown M (2005) Tetrahedron Lett 46:1241
- Moore JA, Sutherland GJ, Sowerby R, Kelly EG, Palermo S, Webster W (1969) J Org Chem 34:887
- 10. Su W, Yang B (2002) Aust J Chem 55:695
- 11. Shi D, Rong L, Wang J, Zhuang Q, Wang X, Hu H (2003) Tetrahedron Lett 44:3199
- 12. Sadanandam YS, Reddy KRM, Rao AB (1987) Eur J Org Chem 22:169
- 13. Reo VB, Ratnam CV (1979) Indian J Chem 18B:409
- 14. Popp FD (1984) J Heterocycl Chem 21:1367
- Garrido F, Ibanez J, Gonalons E, Giraldez A (1975) Eur J Med Chem 10:143
- Kamano Y, Zhang HP, Ichihara Y, Kizu H, Komiyama K, Itokawa H, Pettit GR (1995) Tetrahedron Lett 36:2783
- 17. Jnaneshwarand GK, Deshpande VH (1999) J Chem Res S 632
- Klumpp DA, Yeung KY, Prakash GKS, Olah GA (1998) J Org Chem 63:4481
- 19. Franklin DP (1973) Ger Patent 2,258,505

- 20. Jursic B, Stevens ED (2002) Tetrahedron Lett 43:5681
- 21. Chen C, Li X, Neumann CS, Lo MMC, Schreiber SL (2005) Angew Chem Int Ed 44:2249
- 22. Alcaide B, Almendros P, Acebes RR (2006) J Org Chem 71:2346
- 23. Dabiri M, Salehi P, Otokesh S, Bahramnejad M, Kozehgiry Gh, Mohammadi AA (2005) Tetrahedron Lett 46:6123
- 24. Azizian J, Mohammadi AA, Karimi N, Karimi AR, Mohammadizadeh MR (2006) Catal Commun 7:752
- Azizian J, Mohammadi AA, Karimi AR, Mohammadizadeh MR (2005) J Org Chem 70:350
- 26. Dabiri M, Salehi P, Bagebanzadeh M, Bahramnejad M (2007) Monatsh Chem 138:1253
- 27. Dabiri M, Bagebanzadeh M, Kiani SH, Vakilzadeh Y (2007) Monatsh Chem 138:997
- Mohammadi AA, Azizian J, Hadadzahmatkesh A, Asghariganjeh MR (2008) Heterocycles 75:947
- 29. Dabiria M, Salehib P, Mohammadia AA, Baghbanzadeha M, Kozehgiry Gh (2004) J Chem Res S 570
- 30. Clark RH, Wagner EC (1944) J Org Chem 9:55