Catalytic Hydrophosphination of Alkenylalkyl Ethers

Marina A. Kazankova, Mstislav O. Shulyupin, Irina P. Beletskaya*

Department of Chemistry, Moscow State University (MSU), Leninskie Gory 1, building 3, 119992 Moscow, Russia Fax +7(95)9393618; E-mail: beletska@org.chem.msu.ru Received 4 August 2003

Abstract: Hydrophosphination of alkenylalkyl ethers catalyzed by Pd- and Ni-complexes is described. The reaction is regioselective giving only Markovnikov product isolated as α -alkoxyalkyldiphenyl oxide after oxidation by H₂O₂.

Key words: nickel, palladium, alkenes, hydrophosphination, alkenylalkyl ethers

The reaction of diphenylphosphine with alkenes is a simple and convenient way to alkyldiphenylphosphines and particularly to functionalized phosphines of this type.¹ Hydrophosphination of alkenes is usually carried out using radical initiators,² or in the presence of strong bases³ or Brønsted acids.⁴ In all these reactions R₂P-group is usually directed in β-position of terminal alkenes. Inter- or inrtamolecular hydrophosphination of alkenes under the action of PH₃ or R₂PH can be catalyzed by platinum and palladium complexes,⁵ as well as by complexes of lanthanides.⁶ However Pt- and Pd-complexes catalyze only the reaction with the activated alkenes, having electron withdrawing groups (EWG) and R₂P-group is always added to the terminal carbon atom as in the case of radical reactions.

Recently we have performed hydrophosphination of styrenes and heteroanalogs of styrene catalyzed by Pd- and Ni-complexes and have shown that Ni-complexes are more active than Pd-complexes.⁷ In all reaction only anti-Markovnikov products – β -isomers were formed. Apparently aryl groups activate the double bond because alkylalkenes failed to react with Ph₂PH under these conditions. We suppose that this reaction can be considered as a catalytic analog of Michael addition.

In this report we have shown that hydrophosphination catalyzed by nickel and palladium complexes proceeds easily with alkenes having an electron-donating group – alkenylalkyl ethers (Equation 1). However in contrast to hydrophosphination of alkenes with EWG-groups this reaction is not catalyzed by Pd(0)-and Ni(0)-complexes but proceeds in the presence of Pd²⁺ or Ni²⁺ complexes. The regioselectivity of the reaction is also different, the reaction leads to Markovnikov products – α -alkoxyalkyl-phosphines.

The results of the model reaction of vinylbutyl ether with Ph_2PH [conversion (%) of Ph_2PH measured by ³¹P NMR] are given in Table 1. It was shown that the yield of the product was equal to conversion.

As can be seen from Table 1 Pd(0)- or Ni(0)-complexes are inefficient (entries 1, 2, 11, 12). The PdCl₂(PPh₃)₂ complex is more active than PdCl₂(CH₃CN)₂ (entries 5 and 7). But Ni²⁺-complexes NiBr₂(PPh₃)₂ (entries 14, 15) and 'ligandless' NiBr₂ (entry 17) are the most active. The activity of NiBr₂ can be apparently concerned with the formation of NiBr₂(Ph₂PH)₂. The efficiency of Pd-complexes having secondary phosphine as a ligand has been recently demonstrated.⁸

The high activity of Ni²⁺-complexes allowed us to use lower concentration of the catalyst and to reduce the reaction temperature and reaction time compared to Pd^{2+} -complexes. The reaction can be carried out even at room temperature but needs 7 days for completion (entry 14). The anion in Ni²⁺-complexes plays an important role because Ni(acac)₂ does not catalyze the reaction (entry 13).

We did not observe any significant influence of solvents. The reaction proceeds equally well in benzene, THF or MeCN (entry 3, 9, 10).

The fact that this reaction is not catalyzed by zerovalent nickel complexes, as the reaction of styrenes and alkenes with EWG, suggests that they have different mechanisms. Earlier we have shown that the mechanism and regiose-lectivity of hydrophosphination of alkynes changes in the presence of acids.⁹ It is obvious that acids can be formed by the reduction of PdCl₂ and NiBr₂¹⁰ and in such way can catalyze the addition to nucleophilic alkenes. However we have shown that in the presence of acids (HCl or CF₃COOH) (entries 19, 20) reaction proceeds very slowly and the result is the same as for Ni(0)–HCl (entry 21). A different situation is observed when HCl is added to Ni(acac)₂ (entry 22), probably because of NiCl₂ formation.

SYNLETT 2003, No. 14, pp 2155–2158 Advanced online publication: 15.10.2003 DOI: 10.1055/s-2003-42092; Art ID: G19803ST © Georg Thieme Verlag Stuttgart · New York

Table 1 The Influence of the Catalyst Nature and Temperature onthe Reaction of Ph_2PH with Vinylbutyl in Benzene

Entry	Catalyst	Mol% catalyst	Temp °C [time (h)]	Conver- sion ^a
1	Pd(PPh ₃) ₄	2	100 (8)	0
2	$Pd(PPh_3)_4$	5	120 (8)	<1
3	PdCl ₂ (CH ₃ CN) ₂	5	100 (8)	100
4	PdCl ₂ (CH ₃ CN) ₂	5	80 (15)	>90
5	PdCl ₂ (CH ₃ CN) ₂	2	100 (8)	<50
6 ^b	PdCl ₂ (PPh ₃) ₂	2	100 (8)	100
7	PdCl ₂ (PPh ₃) ₂	2	100 (8)	90
8	PdCl ₂ (PPh ₃) ₂	5	100 (8)	95
9°	PdCl ₂ (CH ₃ CN) ₂	5	100 (8)	100
10 ^d	PdCl ₂ (CH ₃ CN) ₂	5	100 (8)	100
11	Ni(cod) ₂	5	120 (8)	0
12	Ni[P(OEt) ₃] ₄	5	80 (8)	0
13	Ni(acac) ₂	5	120 (8)	0
14	NiBr ₂ (PPh ₃) ₂	5	80 (2)	100
15	NiBr ₂ (PPh ₃) ₂	2	80 (2)	100
16	NiBr ₂ (PPh ₃) ₂	2	r.t. (7 d)	100
17	NiBr ₂	2	80 (2)	100
18	NiBr ₂ (PPh ₃) ₂ /Et ₃ N	5/10	80 (2)	0
19	CF ₃ COOH	10	80 (2)	<10
20	HC1	10	80 (2)	25
21	Ni(cod) ₂ /HCl	5/10	80 (2)	25
22	Ni(acac) ₂ /HCl	5/10	80 (2)	100

^a Determined by NMR ³¹P.

^b 1.5 Molar excess of vinyl ether.

^c Reaction in THF.

^d Reaction in CH₃CN.

We can assume that the mechanism of this reaction involves activation of double bond by M^{2+} with subsequent nucleophilic attack (as at the first step of Wacker process). But at the next step the protonolysis (the acid may be complexed by Ph₂PH) of carbon-metal bond takes place instead of β -hydrogen elimination. Probably this reaction pathway is due to the stabilization of organometallic intermediate by intramolecular M-P bond.¹¹ The necessity of protonolysis allows to explain the absence of the reaction in the presence of Ni(acac)₂. Another proof of this assumption is the absence of reaction catalyzed by NiBr₂(PPh₃)₂ in the presence of Et₃N (entry 18). The following catalytic cycle can be suggested (Scheme 1).

141 -

Scheme 1

Notice that besides $MHal_2$, $HalMPPh_2$ or $M(PPh_2)_2$ formed by the exchange reaction between $MHal_2$ and Ph_2PH , may also participate in the catalytic cycle. The mechanism explains the formation of Markovnikov product in the reaction. Proving of this mechanism means that Wacker-type activation of alkenes can be performed by Ni²⁺.

The optimum conditions for the hydrophosphination of vinylbuthyl ether are 2 mol% of NiBr₂(PPh₃)₂ in benzene at 80 °C. Under these conditions the hydrophosphination of several alkenylalkyl ethers having alkyl substituents at α - or β -carbon was carried out (Table 2). As can be seen from Table 2 the introduction of alkyl group in both positions has little influence on the yield, which remains moderately high (entries 2–5). The only exception is the cyclic ether dihydro-2*H*-pyrane, the reaction of which requires more rigid conditions (100 °C) and gives the product in a lower yield (entry 6).

The synthesized phosphines are readily oxidized upon isolation and for obtaining good NMR spectra and analytical data all phosphines (**2a**–**f**) were oxidized by 30% H_2O_2 to corresponding phosphine oxides (**3a**–**f**).

It should be noted that conventional syntheses of α -alkoxyalkylphosphines are multi step or require reagents easily hydrolyzed with formation of HCl.¹²

The synthesized phosphines (3a-f) and their oxides (4a-f) are not well-studied compounds. However, their application in Horner–Wittig reaction for stereoselective synthesis of functionalized alkenes¹³ or as complexing agents for extraction of uranium and thorium salts from acidic solutions is known.¹⁴ Apart from this, these phosphines having chiral carbon atom can be considered as potentially interesting ligands for transition metal catalysis.

Conclusion: we proposed a simple and efficient method for the synthesis of α -alkoxyalkyldiphenylphosphines by hydrophosphination of alkylvinyl ethers in the presence of Ni-salts.¹⁵

Table 2 Hydrophosphination of Vinylethers with Ph₂PH^a

 a Conditions: vinyl ether(1.65 mmol), Ph_2PH (1.5 mmmol) and Ni(PPh_3)_2Br_2 (2% mol) in benzene (3 mL), 2 hours, 80 °C. b Isolated yield.

° 8 Hours, 100 °C

Acknowledgment

We thank Trostyanskaya I.G. and Kirichenko E. for the preparation of starting compounds and The Grant of Russian Federation President supporting Leading Scientific Schools – 1611.2003.3 for financial support.

References

- (a) The Chemistry of Organophosphorus Compounds; Hartley, F. R., Ed.; Wiley: Chichester UK., Vol. 1–4, 1990– 1996. (b) Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley: New York, 2000. (c) Wicht, D. K.; Glueck, D. S. In Catalytic Heterofunctionalization; Togni, A.; Grutzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001, Chap. 5, ; and references therein. (d) Beletskaya, I. P.; Kazankova, M. A. Russ. J. Org. Chem. 2002, 38, 1391.
- (2) (a) Therrien, B.; Koning, A.; Warol, T. R. Organomatallics 1999, 18, 1565. (b) Mitchell, T. N.; Heesche, K. J. J. Organomet. Chem. 1991, 409, 163. (c) Therrien, B.; Ward, T. R. Angew. Chem. Int. Ed. 1999, 38, 405. (d) Malisheva, S. F.; Gusarova, N. K.; Belogorodova, N. A.; Nikitin, M. V.; Gendin, D. V.; Trofimov, B. A. Zh. Obshch. Khim. 1997, 67, 63.

- (3) (a) Bunlaksananusorn, T.; Knochel, P. *Tetrahedron Lett.* 2002, 43, 5817. (b) Bookham, J. L.; Smithies, D. M. J. Organomet. Chem. 1999, 577, 305.
- (4) (a) See ref.^{2d} (b) Dombek, B. D. J. Org. Chem. 1978, 43, 3408. (c) Wolfsberger, W. Chem.-Ztg. 1988, 112, 53.
- (5) (a) Nagel, U.; Reigel, B.; Bublewitz, A. J. Organomet. Chem. 1989, 370, 223. (b) Hoye, P. A. T.; Pringle, P. G.; Smith, M. B. J. Chem. Soc., Chem. Commun. 1990, 1701. (c) Pringle, P. G.; Brewin, D.; Smith, M. B.; Worboys, K. In Aqueous Organometallic Chemistry and Catalysis, Vol. 5; Horvath, I. T.; Joo, F., Eds.; Dordrecht: The Netherlands, 1995, 111. (d) Costa, E.; Pringle, P. G.; Smith, M. B.; Worboys, K. J. Chem. Soc., Dalton Trans. 1997, 4277. (e) Wicht, D. K.; Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc. 1997, 119, 5039. (f) Costa, E.; Pringle, P. G.; Worboys, K. Chem. Commun. 1998, 49. (g) Orpen, A. G.; Pringle, P. G.; Smith, M. B.; Worboys, K. J. Organomet. Chem. 1998, 550, 255. (h) Wicht, D. K.; Kourkine, I. V.; Kovacik, I.; Glueck, D. S.; Concolino, T. E.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L. Organometallics 1999, 18, 5381. (i) Wicht, D. K.; Kovacik, I.; Glueck, D. S.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L. Organometallics 1999, 18, 5141. (j) Kovacik, I.; Wicht, D. K.; Grewal, N. S.; Glueck, D. S.; Incarvito, C. D.; Guzei, I. A.; Rheingold, A. L. Organometallics 2000, 19, 950.
- (6) (a) Takaki, K.; Takeda, M.; Koshoji, G.; Shishido, T.; Takehira, K. *Tetrahedron Lett.* 2001, *42*, 6357.
 (b) Douglass, M. R.; Stern, C. L.; Marks, T. J. *J. Am. Chem. Soc.* 2001, *123*, 10221. (c) Douglass, M. R.; Marks, T. J. *J. Am. Chem. Soc.* 2000, *122*, 1824.
- (7) Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. Org. Lett. 2002, 4, 761.
- (8) Schnyder, A.; Aemmer, T.; Indolese, A. F.; Pittelkow, U.; Studer, M. Adv. Synth. Catal. 2002, 244, 495.
- (9) Kazankova, M. A.; Efimova, I. V.; Kochetkov, A. N.; Afanas'ev, V. V.; Beletskaya, I. P.; Dixneuf, P. H. Synlett 2001, 497.
- (10) NiX₂ or PdX₂ (X = Cl, Br) react with diphenylphosphine under various conditions to form HX. See for example:
 (a) Issleib, K.; Wenschuh, E. Z. Anorg. Allg. Chem. 1960, 305, 15. (b) Hayter, R. G. Inorg. Chem. 1963, 2, 932.
 (c) Hayter, R. G. J. Am. Chem. Soc. 1962, 84, 3046.
 (d) Weston, C. W.; Verstuyft, A. W.; Nelson, J. H.; Jonassen, H. B. Inorg. Chem. 1977, 16, 1313. (e) Weston, C. W.; Bailey, G. W.; Nelson, J. H.; Jonassen, H. B. J. Inorg. Nucl. Chem. 1972, 34, 1752. (f) G iannandrea, R.; Mastrorilli, P.; Nobile, C.-S.; Dilonardo, M. Inorg. Chim. Acta 1996, 249, 237.
- (11) (a) Backvall, J. E.; Bjorkman, E. E. J. Org. Chem. 1980, 45, 2893. (b) Hegedus, L. S.; Akermark, B.; Zetterberg, K.; Olsson, L. F. J. Am. Chem. Soc. 1984, 106, 7122.
- (12) (a) Petrov, K. A.; Chauzov, V. A.; Agafonov, S. V. Zh. Obshch. Khim. 1980, 50, 1510. (b) Mironova, Z. N.; Tzvetkov, E. N.; Nikolaev, A. V.; Kabachnik, M. I.; Dyadin, Yu. A. Zh. Obshch. Khim. 1974, 44, 1217; and references therein. (c) Legin, G. Ya. Zh. Obshch. Chim. 1976, 46, 545.
- (13) (a) For review see: Clayden, J.; Warren, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 241. (b) The synthesis of the pheromon of olive fly using 4f, see: Ley, S. V.; Lygo, B. Tetrahedron Lett. 1984, 24, 113.
- (14) (a) Artuhin, P. I.; Shavinskiy, B. M.; Mityakin, Yu. L.; Mironova, Z. N.; Tzvetkov, E. N.; Nikolaev, A. V.; Kabachnik, M. I. *Uzv. AN USSR, Ser. Khim.* 1974, 41.
 (b) Nikolaev, A. V.; Durasov, V. B.; Mironova, Z. N. *Dokladi AN USSR* 1969, *186*, 603.

Synlett 2003, No. 14, 2155-2158 © Thieme Stuttgart · New York

(15) **Experimental Conditions:** In a 8 mm tube filled with argon were placed Ni(PPh₃)₂Br₂ (55 mg, 5 mol%), Ph₂PH (279 mg, 1,5 mmol), alkenyl ether (1.65 mmol) and dry benzene (3 mL). The tube was sealed and placed in a hot bath. Reaction time and temperature are given in Table 2. After cooling the tube was opened and the solvent was evaporated. The residue was dissolved in 15 mL of Et₂O and 2 ml 30% H₂O₂ was added. The mixture was stirred until the organic phase discoloured. The organic phase was separated, washed with water, dried under MgSO₄ and evaporated in vacuum. The

target compound was recrystallized from hexane or purified by column chromatography (Al₂O₃, Et₂O). 1-Butoxy-ethyl(diphenyl)phosphine oxide (**3a**) was recrystallized from hexane (cooling up to –18 °C), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 0.83–0.85 (t, 3 H), 1.22–1.26 (m, 2 H), 1.45–1.51 (m, 5 H), 3.19–3.25 (m, 1 H), 3.58–3.64 (m, 1 H), 4.19–4.23 (m, 1 H), 7.45–7.58 (m, 6 H), 7.88–7.92 (m, 2 H), 8.05–8.09 (m, 2 H). ³¹P{¹H} NMR (162.6 MHz, CDCl₃): δ = 30.0. Anal. Calcd: C, 71.52; H, 7.61. Found: C, 71.35; H, 7.45.

LETTER