

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 2567–2570

Discovery of a potent and selective $\alpha_v \beta_3$ integrin antagonist with strong inhibitory activity against neointima formation in rat balloon injury model

Seiji Iwama,^{a,*} Tomoko Kitano,^b Fumiyo Fukuya,^b Yayoi Honda,^b Yuji Sato,^b Mitsue Notake^b and Toshiya Morie^a

^aChemistry Research Laboratories, Dainippon Pharmaceutical Co., Ltd, Enoki 33-94, Suita, Osaka 564-0053, Japan ^bPharmacology & Microbiology Research Laboratories, Dainippon Pharmaceutical Co., Ltd, Enoki 33-94, Suita, Osaka 564-0053, Japan

Received 22 January 2004; revised 23 February 2004; accepted 23 February 2004

Abstract—A new series of phenylpiperazine-based derivatives with strong antagonistic activity for $\alpha_v \beta_3$ integrin was synthesized. Of these derivatives, the fluorine-substituted compound **8** showed strong inhibitory activity and high selectivity for $\alpha_v \beta_3$ integrin receptor (IC₅₀ = 0.055 nM). In vivo evaluation of the antistenotic effects of **8** indicated that this compound significantly inhibits neointima formation in rat balloon injury model.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Long-term success of percutaneous coronary interventions (PCIs) remains limited due to restenosis, which occurs within 6 months in 30-50% of patients who undergo balloon angioplasty and in 20-40% of patients who receive bare stent.¹ Therefore, reduction in the incidence of restenosis after angioplasty or stenting has been a research theme and clinical aim for a number of years. To date, numerous pharmacological agents have been evaluated in an attempt to reduce the rate of restenosis in patients who underwent PCIs. However, only a few compounds have been shown to influence restenosis after balloon angioplasty or stenting.² Pathologically, experimental evidence has suggested that restenosis is characterized by vascular smooth muscle cells (SMCs) migration, proliferation and extracellular matrix production in disease states.³

The $\alpha_v \beta_3$ integrin, also known as the vitronectin receptor, is expressed on a variety of cell types,⁴ including endothelial cells, SMCs, macrophage, platelets, osteo-

* Corresponding author. Tel.: +81-663375901; fax: +81-663387656; e-mail: seiji-iwama@dainippon-pharm.co.jp

0960-894X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.02.075

clasts and various tumour cells, and is known to mediate a variety of biological events, including migration and proliferation of SMCs during restenosis,⁵ adhesion of osteoclasts to bone matrix and angiogenesis.⁶ The integrin $\alpha_v \beta_3$ binds to extracellular matrix proteins, such as vitronectin, fibronectin, osteopontin, fibrinogen and von Willebrand factor through interaction with the tripeptide Arg-Gly-Asp (RGD) sequence.

A vast number of cyclic peptide and nonpeptide antagonists with high affinity for $\alpha_v\beta_3$ integrin have been reported.⁷ Nevertheless, only a few $\alpha_v\beta_3$ integrin antagonists have been shown to inhibit neointima formation in the arterial injury model.⁵ Our interest in this field was prompted by the finding that $\alpha_v\beta_3$ antagonists inhibit migration of SMC into neointima and/or proliferation of SMC in neointima after arterial injury.

In early studies, Kessler and co-workers disclosed cyclic RGD peptides as selective $\alpha_{\nu}\beta_{3}$ integrin antagonists, and proposed an $\alpha_{\nu}\beta_{3}$ ligand-binding model. Their findings suggest that conformation of the RGD-sequence with $\operatorname{ArgC}^{\alpha}/\operatorname{AspC}^{\alpha}$ -distance of about 500 pm and $\operatorname{ArgC}^{\beta}/\operatorname{AspC}^{\beta}$ -distance of about 700 pm fits better in the $\alpha_{\nu}\beta_{3}$ receptor than in the $\alpha_{IIb}\beta_{3}$ receptor.⁸ In our search for a new scaffold based on Kessler's model, we found 3-aminophenyl-piperazine moiety as a constrained scaffold for the nonpeptide $\alpha_{\nu}\beta_{3}$ integrin antagonists.

Keywords: Integrin rat balloon model.

Herein, we disclose our initial effort for the synthesis and structure–activity relationship of a new series of phenyl-piperazine based $\alpha_v \beta_3$ integrin antagonists, which have strong inhibitory activity of neointima formation in rat balloon injury model.

2. Chemistry

Synthesis of the $\alpha_{v}\beta_{3}$ integrin antagonists 1–15 was accomplished by attaching the groups bearing the acidic and basic moieties in 1–15 to 3-aminophenyl-piperazine. As shown in Scheme 1, reaction of 3-fluoronitrobenzene with piperazine in DMSO at 100 °C,⁹ followed by coupling with N_α-substituted glutamic acid *tert*-butyl ester (17) using EDCI and HOBt in DMF provided the coupled product 18. Reduction of the nitro group in 18 with Fe and NH₄Cl in EtOH and H₂O gave the aniline 19. Introduction of a cyclic guanidine moiety with HgCl₂ and diBoc thiourea derivatives (20a–f) using Kim's protocol,¹⁰ followed by deprotection of both diBoc groups and the *tert*-butyl ester group provided the desired compounds 1–15.

3. Results and discussion

3.1. Binding study

For in vitro screening, we examined the inhibitory activity of 1–15 for $\alpha_v\beta_3$ and $\alpha_{IIb}\beta_3$ integrins binding using human vitronectin and fibrinogen as ligands, respectively,^{11,12} and for human vascular smooth muscle cells (HVSMC) proliferation.¹³ As shown in Table 1, among the nonsubstituted six-membered guanidine analogues (2, 6, 7, 11–15), the sulfonamide analogues (11, 12) showed low selectivity for $\alpha_{IIb}\beta_3$ integrin. Likewise, the amide and urea analogues (13–15) showed low inhibitory activity for $\alpha_{v}\beta_{3}$ integrin, although their selectivity for $\alpha_{IIb}\beta_3$ integrin was modest. However, the benzylcarbamate analogue 2 showed high inhibitory activity for $\alpha_v \beta_3$ integrin (IC₅₀ = 0.058 nM) and high selectivity for $\alpha_{IIb}\beta_3$ integrin. As for the effect of the guanidine moiety, the ring size [five-membered (1), sixmembered (2) and seven-membered (5)] had no significant influence on both the inhibitory activity for $\alpha_v \beta_3$ integrin and inhibition of HVSMC proliferation. However, introduction of a fluorine atom on the six-membered cyclic guanidine moiety of 2 (yielding 3) resulted in good improvement in inhibition of HVSMC proliferation. Likewise, the inhibitory activity of 8 for both $\alpha_v \beta_3$ integrin and HVSMC proliferation increased compared with that of 7, 9 or 10.

Among the compounds synthesized in this study, the fluorine-substituted analogues **3** and **8** having both high inhibitory activity for $\alpha_v \beta_3$ integrin (**3**: IC₅₀ = 0.063 nM; **8**: IC₅₀ = 0.055 nM) and potent inhibition of HVSMC proliferation (**3**: IC₅₀ = 0.26 μ M, **8**: IC₅₀ = 0.18 μ M) were selected as candidates for inhibition of neointima formation in rat balloon injury model.

3.2. Rat balloon injury model

To evaluate the antistenotic effects of **3** and **8**, their ability to inhibit neointima formation in the carotid artery of rat balloon injury model was examined.¹⁴

For a period of 15 days starting 1 day before injury, compound **3** or **8** was infused to rats subcutaneously at a constant rate of 1.3 μ mol/rat/day using an AlzetTM osmotic pump. Measurements of plasma levels of **8** indicated a steady state of plasma concentration exceeding the in vitro IC₅₀ value for inhibition of HVSMC proliferation (**8**: ca. 0.35 μ M, IC₅₀ = 0.18 μ M).

Table 1. Inhibitory activity of phenyl-piperazine antagonists 1-15

Compound	R	\mathbf{R}_1	\mathbf{R}_2	$\alpha_v\beta_3\ IC_{50}\ (nM)$	$\alpha_{IIb}\beta_3 \ IC_{50} \ (nM)$	$\alpha_v\beta_3/\alpha_{IIb}\beta_3$ ratio	HVSMC ^a proliferation assay IC ₅₀ (µM)
1				0.16	720	4500	3.0
2	PhCH ₂ OCO-	Н	Н	0.058	660	11,000	1.1
3	PhCH ₂ OCO-	F	Н	0.063	540	8600	0.26
4	PhCH ₂ OCO-	OH	Н	0.15	340	2300	3.5
5				0.056	>1000	>18,000	1.7
6	EtOCO-	Н	Н	0.59	>1000	>1700	2.1
7	iso-BuOCO-	Н	Н	0.32	>1000	>3100	0.91
8	iso-BuOCO-	F	Н	0.055	>1000	>18,000	0.18
9	iso-BuOCO-	OH	Н	0.30	>1000	>33,000	2.0
10	iso-BuOCO-	CH_3	CH_3	0.38	>1000	>2600	3.4
11	PhSO ₂ -	Н	Н	1.4	88	63	>10
12	Mes-b	Н	Н	0.22	30	140	>10
13	PhCH ₂ CO-	Н	Н	6.8	>1000	>150	>10
14	EtNHCO-	Н	Н	3.6	>1000	>280	>10
15	PhCH ₂ NHCO-	Н	Н	1.4	>1000	>710	>10

^a HVSMC: human vascular smooth muscle cell.

^b2,4,6-Trimethylbenzenesulfonyl.

Table 1	2.	Results	of	morphom	etrical	examination	of	carotid	cross	sections
---------	----	---------	----	---------	---------	-------------	----	---------	-------	----------

Compound	Number of animals	Intima area ^a $(10^3 \mu\text{m}^2)$	%Inhibition from control	Media area ^a (10 ³ µm ²)	I/M ratio ^{a,b}	%Inhibition from control
Experiment no. 1						
Control	7	181 ± 16		156 ± 4	1.16 ± 0.09	
3	6	$113 \pm 13^{**}$	38	149 ± 6	$0.76 \pm 0.09^{**}$	34
Experiment no. 2						
Control	7	178 ± 17		171 ± 8	1.06 ± 0.10	
8	7	$81\pm9^{***}$	54	162 ± 7	$0.50 \pm 0.05^{***}$	53

 $p^{**} p < 0.01$ and $p^{***} p < 0.001$ compared with control.

^a Values represent the mean \pm SE.

 ${}^{\rm b}I/M$ ratio, intima area to media area ratio.

Rats carotid arteries were isolated 14 days after injury, cross-sectioned and morphometrically analyzed. As shown in Table 2, compounds 3 and 8 inhibited neointima formation by 38% (p < 0.01) and 54% (p < 0.001), respectively, compared to each control group, whereas no difference in media area was observed between compounds treated and untreated control rats. The ratios of intima area to media area (I/M) in the case of 8 were higher than those in the case of 3(3: 34%, 8: 53%). From these results, compound 8 was selected as a better inhibitor of neointima formation in rat balloon injury model. Representative cross sections of the arteries are shown in Figure 1. I/M ratios in the sections were close to the mean values in each group (control rat: 1.16, 8-treated rat: 0.51). Following injury, the intima area in the control rat (Fig. 1b,e) remarkably increased compared with that in the uninjured normal rat (Fig. 1a,d). However, treatment with **8** inhibited neointima formation following injury (Fig. 1c,f). In addition, compound **8** exhibited a dose-dependent inhibition; I/M ratios of 21% and 38% at doses of 0.14 and 0.43 µmol/rat/day, respectively.

4. Conclusion

In summary, we synthesized highly selective $\alpha_v \beta_3$ integrin antagonists based on a phenyl-piperazine RGD peptidemimetic. Among the synthesized compounds, the fluorine-substituted **8** showed the strongest inhibitory activity with high selectivity for $\alpha_v \beta_3$ integrin. In vivo evaluation of the antistenotic effects of **8** indicated that

Figure 1. Typical cross sections of rats carotid arteries 14 days after balloon injury. (a) Normal, the right uninjured carotid artery (\times 44). (b) Control, the left injured carotid artery in untreated rat (\times 44). (c) Treated rat, the left injured carotid artery in **8**-treated rat (\times 44). (d) High magnification (\times 147) of panel (a). (e) High magnification (\times 147) of panel (b). (f) High magnification (\times 147) of panel (c).

this compound significantly inhibits neointima formation in rat balloon injury model. It is therefore suggested that compound $\mathbf{8}$ may offer a new entry for the treatment of restenosis after PCIs.

Acknowledgements

We thank Mr. Kenji Kojima and Mr. Naohiro Nishimura for their work on the determinations of compound's concentration in plasma.

References and notes

- (a) The STRESS Investigators. New Engl. J. Med. 1994, 331, 496; (b) The BENESTENT Study Group. New Engl. J. Med. 1994, 331, 489; (c) Babapulle, M. N.; Eisenberg, M. J. Circulation 2002, 106, 2734.
- (a) Johnson, G. J.; Griggs, T. R.; Badimon, L. *Thromb. Haemost.* **1999**, *81*, 835; (b) Gruberg, L.; Waksman, R.; Satler, L. F.; Pichard, A. D.; Kent, K. M. *Exp. Opin. Invest. Drugs* **2000**, *9*, 2555.
- 3. Ross, R. Nature 1993, 362, 801.
- Byzova, T. V.; Rabbani, R.; D'Souza, S. E.; Plow, E. F. Thromb. Haemost. 1998, 80, 726.
- 5. Sajid, M.; Stouffer, G. A. Thromb. Haemost. 2002, 87, 187.
- Brooks, P. C.; Clark, R. A. F.; Cheresh, D. A. Science 1994, 264, 569.
- For recent reviews on α_vβ₃ integrin antagonist, see: (a) Miller, W. H.; Keenan, R. M.; Willette, R. N.; Lark, M. W. Drug Discovery Today 2000, 5, 397; (b) Duggan, M. E.;

Hutchinson, J. H. *Exp. Opin. Ther. Patents* **2000**, *10*, 1367; (c) Hölzemann, G. *IDrugs* **2001**, *4*, 72; (d) Coleman, P. J.; Duong, L. T. *Exp. Opin. Ther. Patents* **2002**, *12*, 1009.

- (a) Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S. L.; Jonczyk, A.; Kessler, H. J. Am. Chem. Soc. 1996, 118, 7461; (b) Haubner, R.; Finsinger, D.; Kessler, H. Angew. Chem., Int. Ed. 1997, 36, 1374.
- Belfield, A. J.; Brown, G. R.; Foubister, A. J.; Ratcliffe, P. D. *Tetrahedron* 1999, 55, 13285.
- 10. Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677.
- Inhibitory activity on human α_vβ₃ integrin binding was determined with the use of biotinylated human vitronectin as the ligand according to the methods described in Mousa, S. A.; Forsythe, M.; Lorelli, W.; Bozarth, J.; Xue, C.-B.; Wityak, J.; Sielecki, T. M.; Olson, R. E.; DeGrado, W.; Kapil, R.; Hussain, M.; Wexler, R.; Thoolen, M. J.; Reilly, T. M. *Coron. Artery Dis.* **1996**, *7*, 767.
- Inhibitory activity on human α_{IIb}β₃ integrin binding was determined with the use of biotinylated human fibrinogen as the ligand. The binding assay was carried out essentially in a similar manner as that for α_vβ₃ integrin binding, although the modified antigen capture ELISA procedure was used instead of immobilization of a purified α_{IIb}β₃ integrin protein; see: (a) Kosugi, S.; Tomiyama, Y.; Shiraga, M.; Kashiwagi, H.; Mizutani, H.; Kanakura, Y.; Kurata, Y.; Matsuzawa, Y. *Thromb. Haemost.* 1996, 75, 339; (b) Kashiwagi, H.; Tomiyama, Y.; Tadokoro, S.; Honda, S.; Shiraga, M.; Mizutani, H.; Handa, M.; Kurata, Y.; Matsuzawa, Y.; Shattil, S. J. *Blood* 1999, 93, 2559.
- 13. Inhibitory activity on human VSMC proliferation was determined using the WST-1 cell proliferation assay; see: Ishiyama, M.; Shiga, M.; Sasamoto, K.; Mizoguchi, M.; He, P.-G. *Chem. Pharm. Bull.* **1993**, *41*, 1118.
- Clowes, A. W.; Reidy, M. A.; Clowes, M. M. Lab. Invest. 1983, 49, 327.