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ABSTRACT: A catalytic formal ene reaction between 
ketone-derived silyl enol ethers and terminal alkynes is 
described. This transformation is uniquely capable of 
bimolecular assembly of 2-siloxy-1,4-dienes and can be 
used to access β,γ-unsaturated ketones containing qua-
ternary carbons in the α-position. 

Intermolecular alkenylation of enolates or their surro-
gates offers direct and convenient access to β,γ-
unsaturated ketones, versatile building blocks that con-
tain two orthogonal functionalization sites. Over 30 
years ago, Migita reported pioneering examples of such 
sp2-sp3 coupling processes, which relied on Pd(0)-
catalyzed alkenylation of in situ generated tri-n-butyltin 
enolates with substituted vinyl bromides.1 Subsequent 
works from other laboratories further demonstrated the 
power of Pd(0)- and Ni(0)-catalyzed alkenylations in the 
synthesis of β,γ-unsaturated ketones,2-8 although these 
reactions are typically limited to aryl-alkyl or alkenyl-
alkyl ketones. Intermolecular alkenylations of dialkyl 
ketones bearing two unactivated enolizable positions are 
much less represented.9,10 In this context, selective for-
mation of quaternary centers poses a particular chal-
lenge, and only isolated examples can be found in the 
literature.7,11 It is noteworthy that analogous intramolec-
ular alkenylations are much more common and have 
found a number of applications in synthesis, likely ow-
ing to high levels of regiocontrol enforced by kinetic 
selectivity during cyclization.12 Here we demonstrate a 
new catalytic formal ene reaction between silyl enol 
ethers and terminal alkynes that is uniquely capable of 
bimolecular assembly of 2-siloxy-1,4-dienes and can be 
used to access β,γ-unsaturated ketones containing qua-
ternary carbons in the α-position. 

During our work on the synthesis of paxilline indole 
diterpenes, we identified an indium(III) bromide-
mediated alkenylation of a silyl enol ether with a termi-
nal alkyne as suitable means for assembly of the requi-
site β,γ-unsaturated ketone.13 We became intrigued by 

the idea of performing intermolecular alkenylations in a 
catalytic fashion with retention of the silyl enol ether 
functionality in the product.14 Electrophilic activation of 
alkynes toward nucleophilic attack by silyl enol ethers 
has found extensive application in α-alkenylation of 
ketones. In his pioneering work, Conia described the 
first, to our knowledge, examples of such reactivity.15 A 
number of reports of related Al(III)-mediated16 and tran-
sition metal-catalyzed17-22 intramolecular alkenylations 
of ketone-derived enoxysilanes had followed in subse-
quent years, including some asymmetric variants.23 
However, relevant intermolecular alkenylations of silyl 
enol ethers find very little precedent13,24,25 and the only 
available catalytic intermolecular process requires use of 
1,3-dicarbonyls as activated precursors26 (Scheme 1). In 

Scheme 1. Comparison of relevant intermolecular 

alkenylations with current work 

 

the latter example, facile enolization of the substrates 
enables the ene-like reaction with alkynes. A similar 
process between ketone-derived silyl enol ethers and 
alkynes is considerably more challenging as it requires a 
net proton transfer from the allylic position of the 
enoxysilane to the former alkyne fragment that has never 
been observed in a bimolecular setting.27 Furthermore, 
the propensity of silyl enol ethers derived from unsym-
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metrical dialkyl ketones to isomerize under acidic condi-
tions28,29 poses a potential issue of site selectivity. Final-
ly, the product of the alkenylation, a 2-siloxy-1,4-diene, 
would itself represent a substrate for the reaction, posing 
an inherent issue of chemoselectivity. In particular, ap-
plication of such a reaction to selective construction of 
quaternary centers would require preferential alkenyla-
tion of fully substituted enoxysilane starting materials in 
the presence of less substituted enoxysilane products. 

With these considerations in mind, we set out to inves-
tigate the catalytic formal ene reaction between silyl 
enol ether 1 and 1-octyne (Table 1, see Supporting Infor-  

Table 1. Development of the catalytic formal ene reaction 

 
a0.25-0.5 mmol of 1, 1.5 equiv. of alkyne, 0.25-0.5 mL 

of (CH2Cl)2, 20-28 h. bBased on internal standard and de-
termined by 1H NMR. cd. r. 1:1. d65% isolated yield of 2. 

mation for additional details). Gold(I) complexes19 
proved to be poor catalysts for the desired transfor-
mation with the best-performing combination of a NHC-
derived precatalyst and a halide-scavenging additive 
providing only small amounts of diene 2 and the hydro-
lyzed product 3 (entry 1). Application of zinc(II) bro-
mide22 was unsuccessful (entry 2). Conditions similar to 
those previously employed by Nakamura26 afforded only 
traces of enoxysilane 2 (entry 3). However, changing the 
counteranion in the indium(III)-based catalyst produced 
instructive trends. While chloride (entry 4) offered only 
marginal improvement over triflate, bromide (entry 5) 
allowed for the efficient alkenylation of substrate 1 and 
only small amounts of ketone 3, allene 4,30 and regioi-
somer 5 were observed. Application of indium(III) io-
dide and introduction of halide-scavenging additives 

were less efficient (entries 6 and 7). Catalytic alkenyla-
tion in the presence of indium(III) bromide could be 
performed at temperatures as low as 50 °C, which de-
creased the content of allene 4 and regioisomer 5 (entry 
8). Attempted alkenylation in the presence of catalytic 
amounts of hydrogen bromide (generated in situ, entry 
9) as well as triflic acid (entry 10) did not lead to prod-
uct formation, confirming the catalytic role of the metal 
derivative. The robust TIPS-enol ethers31 performed bet-
ter than more labile TMS- and TBS-derivatives. Interest-
ingly, attempted alkenylation of isomeric silyl enol ether 
6 afforded siloxydiene 2 as a major product, suggesting 
isomerization of 6 to 1 under the reaction conditions. 

It is important to note that the product of double 
alkenylation was not observed during these studies. 
Alkenylation of the fully substituted enoxysilane 1 must 
therefore proceed considerably faster under our condi-
tions than alkenylation of product 2. Although specula-
tively, we attribute the observed selectivity to the differ-
ence in the conformational preferences of the bulky si-
loxy group.32 To demonstrate the application of such 
unusual selectivity, the synthesis of diketone 9 was un-
dertaken (Scheme 2). Starting diketone 8 contains three 

Scheme 2. Synthesis of diketone 9 

 

reactive α-positions, C1, C8 and C10, and selective 
alkenylation at C8 represents a considerable challenge. 
To our delight, subjection of the bis-silyl enol ether de-
rived from diketone 8 to our alkenylation conditions 
resulted in selective reaction of the fully substituted si-
loxyalkene fragment, delivering monoalkenylated prod-
uct 9 after mild hydrolytic work-up.  

With a functional set of conditions in hand, we inves-
tigated the preliminary scope of this catalytic formal ene 
reaction. We found that alkyl acetylenes with aromatic, 
halide, and ether functionalities as well as conjugated 
alkynes successfully participate in the alkenylation pro-
cess (dienes 10-14 in Table 2, next page). The reaction 
also tolerated a Lewis basic ester group (diene 15), alt-
hough more forcing conditions were required in this 
case.33 Trimethylsilylacetylene and internal alkynes did 
not participate in the alkenylation. The formal ene reac-
tion was effective at forming quaternary centers contain-
ing four non-methyl substituents (dienes 16 and 17) and 
various substitution patterns of the cyclopentene ring 
were tolerated (dienes 18-21). Synthesis of dienes 19-21 

demonstrates a convenient approach to diastereoselec-
tive vicinal difunctionalization of a simple alkenone34 
and can be useful in the context of natural product syn-
thesis.13 Cyclohexanone-derived silyl enol ethers also 
underwent successful alkenylation and corresponding  
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Table 2. Preliminary substrate scope of the alkenylation
a
 

 
aTypically, starting silyl enol ethers were mixtures of 

isomers, see Supporting Information for details. 1 equiv. of 
silyl enol ether, 1.5 equiv. of alkyne, 10 mol% of InBr3, 
(CH2Cl)2 (1 M in enoxysilane), 65 °C, ca. 24 h; r. r. ≥10:1 
(except 15: r. r. 9:1; 24: r. r. 7:1). Siloxydienes (except 13-
14 and 24) contained ca. 5 mol% of inseparable allenes. 
bHeated to 50 °C. cHeated to 80 °C. d5 mol% of InBr3. 
eNeat. f5 M in silyl enol ether. gHeated for ca. 72 h. hHeated 
for ca. 48 h. iAfter hydrolysis. 

ketones 22 and 23 could be readily isolated after mild 
hydrolytic work-up.35 Furthermore, acyclic silyl enol 
ethers were suitable substrates for this formal ene reac-
tion (e.g., see diene 24). Because the resulting 2-siloxy-
1,4-dienes often proved hydrolytically unstable relative 
to their cyclic counterparts, the reaction mixtures were 
subjected to mild hydrolytic work-up, delivering the 
corresponding β,γ-unsaturated ketones (products 25-30). 
In almost all cases, the desired 1,1-disubstituted alkenes 
were produced in a highly regioselective manner and 
only small quantities of corresponding 1,2-disubstituted 
isomers were observed. 

We propose that the mechanism of this catalytic for-
mal ene reaction involves initial nucleophilic attack of 
enoxysilane 1 on alkyne-indium(III) bromide complex36 
to form alkenylindium 31 (or the corresponding divinyl-
indium derivative; Scheme 3).37 The formation and ste- 

Scheme 3. Proposed mechanism of the alkenylation 

 

reochemistry of intermediate 31 or related species is 
supported by observation of deuterated ketone 34 upon 
treatment of the reaction mixture with CD3OD.34 Similar 
alkenylindium derivatives have been previously isolated 
and characterized by Baba.24 Intermediate 31 can under-
go protodemetallation with indium(III) bromide-ketone 
complex 32 to produce ketone 3 and enolate 33, respec-
tively.26,38 Participation of ketone 3, which is formed 
early and whose concentration remains constant during 
the reaction,39 is supported by the observation that an 
additive of ketone 35 undergoes silylation in situ to form 
enoxysilane 36.34 Subsequent silylation of enolate 33 is 
expected to afford the desired siloxydiene 2. 

In summary, we disclose a new catalytic intermolecu-
lar ene reaction between ketone-derived silyl enol ethers 
and terminal alkynes. Among the features of this 
alkenylation are selective formation of highly sterically 
encumbered quaternary centers and direct access to 2-
siloxy-1,4-dienes and corresponding β,γ-unsaturated 
ketones with synthetically challenging substitution pat-
terns. The reaction has its limitations and future work 
will focus on expanding the substrate scope and further 
improving the efficiency of the process. However, this 
transformation has no alternatives among the current 
methods and can be expected to find broad application 
in natural product synthesis. 
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