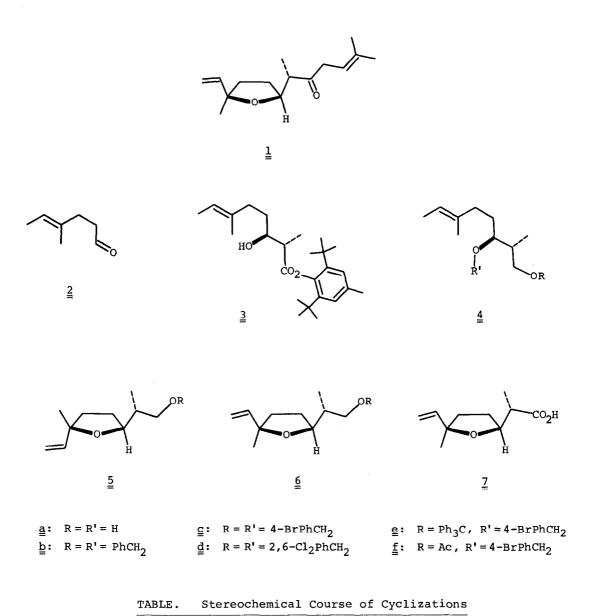
A HIGHLY STEREOSELECTIVE SYNTHESIS OF DAVANONE

Paul A. Bartlett^{*} and Christopher P. Holmes Department of Chemistry, University of California Berkeley, California 94720


Iodocyclization of the <u>anti</u> 4-bromobenzyl ether acetate 4f is a key step in the first stereocontrolled synthesis of the trisubstituted tetrahydrofuran davanone.

Davanone $(\underline{1})$, a sesquiterpene isolated from the flowering herb Artemesia pallens, was first characterized in 1968 by Sipma and van der Wal.¹ The relative stereochemistry was proposed independently by Naegeli² and Birch,³ and proven by Ohloff and Giersch⁴ in 1970. During the past decade there have been several syntheses of davanone and related compounds^{2,3,5,6}; however, in each case a mixture of the four possible diastereomers was produced. In connection with our study of the stereocontrolled formation of substituted tetrahydrofurans,^{7,8} we have developed a stereoselective synthesis of davanone, which we report here.

The substrate we required for application of our <u>cis</u>-2,5-substituted tetrahydrofuran synthesis⁷ was a substituted benzyl ether derivative of diol <u>4a</u>. This material was obtained by lithium aluminum hydride reduction of β -hydroxy ester <u>3</u>,^{10a} which in turn was produced from (<u>E</u>)-4-methyl-4-hexenal (<u>2</u>)⁷ and the propanoate ester of BHT, using the <u>anti</u>-selective aldol condensation developed by Heathcock.¹¹ Diol <u>4a</u>^{10a} was obtained in 76% overall yield, with a stereochemical purity of 97.6%.

Our initial studies focussed only on the stereoselectivity of the tetrahydrofuran synthesis, hence no attempt was made at first to differentiate between the primary and secondary hydroxyl groups of $4\underline{a}$. Three bis(benzyl) ethers $(4\underline{b}-4\underline{d})$ were prepared and, along with the diol $4\underline{a}$ itself, subjected to iodocyclization and potassium t-butoxide-induced elimination.¹² As expected,⁷ the diol affords the trans compound $5\underline{a}$ predominantly, while benzyl ethers $4\underline{b}$ and $4\underline{c}$ give the cis

1365

Substrate	Solventa	Ratio, $\underline{6}/\underline{5}^{b}$
<u>4a</u>	MeCN	1:5
4 <u>a</u>	CH ₂ Cl ₂	1:1.5
	CH2C12	6:1
<u>4c</u>	CH ₂ Cl ₂	16:1

 $^{\rm a}$ See footnote 12 for representative reaction conditions. $^{\rm b}$ Determined by 250-MHz $^{\rm 1}{\rm H-NMR}.$

isomers $\underline{6}\underline{b}$ and $\underline{6}\underline{c}$ with varying degrees of stereoselectivity, as indicated in the Table. The 2,6-dichlorobenzyl derivative $\underline{4}\underline{d}$ does not react.

Although the 4-bromobenzyl derivative $\underline{6c}$ is formed with a high degree of selectivity, not surprisingly removal of the benzyl group is impractical in the presence of the allylic ether. However, the two hydroxyl groups of $\underline{4a}$ can readily be distinguished by selective protection of the primary one with trityl chloride. Subsequent alkylation with 4-bromobenzyl bromide then affords $\underline{4e}$ in 89% overall yield.^{10a} Conversion of this material to the acetate $\underline{4f}$,^{10a,13} iodocyclization,¹² elimination, and hydrolysis provide the desired alcohol $\underline{6a}^{10b}$ in 50% overall yield from $\underline{4e}$. High-field ¹H-NMR analysis indicated that this material is comprised of a major and two minor diastereomers, presumably the <u>cis-anti</u>, <u>trans-anti</u>, and cis-syn compounds.

Jones oxidation of $\underline{6a}$ affords the acid $\underline{7}^{10a}$ in 74% yield. Using the method of Birch et al.,³ this compound is then converted to racemic davanone $\underline{1}$ in 39% yield by condensation with excess dimethallyllithium.¹⁴ The spectral characteristics (¹H- and ¹³C-NMR, IR, MS) of our synthetic material proved to be identical with those reported for natural davanone, and significantly different from those reported for its diastereomers.² Capillary GC analysis (12.5-m × 0.2-mm dimethylsilicone column, temp 50 -> 250 °C) indicated that the ratio of diastereomers observed for the alcohol <u>6a</u> (above) is preserved in our final product, which consists of 2% of the <u>cis-syn</u>, 6% of the <u>trans-anti</u>, and 92% of the desired <u>cis-anti</u> davanone isomers.¹⁶

* * * * * *

Acknowledgment. We are grateful for the support provided for this research by grant no. GM-30141 from the National Institutes of Health.

NOTES AND REFERENCES

- 1. G. Sipma and B. van der Wal, Rec. Trav. Chim. Pays-Bas, 87, 715 (1968).
- 2. P. Naegeli and G. Weber, Tetrahedron Letters, 959 (1970).
- A.J. Birch, J.E.T. Corrie, and G.S.R. Subba Rao, <u>Aust. J. Chem.</u>, <u>23</u>, 1811 (1970).

- 4. G. Ohloff and W. Giersch, <u>Helv. Chim. Acta</u>, <u>53</u>, 841 (1970).
- 5. P. Naegeli, J. Klimes, and G. Weber, Tetrahedron Letters, 5021 (1970).
- 6. (a) A.F. Thomas, et al., <u>Helv. Chim. Acta</u>, <u>57</u>, 2055 (1970);
 - (b) A.F. Thomas, et al., <u>ibid</u>., <u>57</u>, 2062, 2066, 2076 (1970).
- 7. S.D. Rychnovsky and P.A. Bartlett, <u>J. Am. Chem. Soc</u>., <u>103</u>, 3963 (1981).
- 8. P.A. Bartlett and K.K. Jernstedt, Tetrahedron Letters, 1607 (1980).
- 9. S. Masamune, Sk.A. Ali, D.L. Snitman, and D.S. Garvey, <u>Angew. Chem.</u>, <u>Int.</u> <u>Edit. Engl.</u>, <u>19</u>, 557 (1980); S. Masamune, T. Kaiho, and D.S. Garvey, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 5521 (1982).
- 10. The ¹H- and ¹³C-NMR and IR spectra and (a) combustion or (b) high-resolution mass spectral analysis of this compound were fully consistent with the structure assigned.
- C.H. Heathcock, M.C. Pirrung, S.H. Montgomery, and J. Lampe, <u>Tetrahedron</u>, <u>37</u>, 4087 (1981).
- 12. Representative cyclization/elimination conditions: substrate, 2.5 eq of I₂, and 0.1 eq of NaHCO₃ in CH₂Cl₂ stirred at 0°C for 1.5 hr; partitioned between aq. Na₂S₂O₃ and ether, dried and concentrated; treated with 6 eq of KO_±-Bu in THF for 2 hr at 25°C.
- Direct cyclization of the trityl benzyl ether 4e was not successful, because of loss of the labile trityl ether during the reaction.
- 14. Dimethallyllithium was prepared from dimethallyl phenyl ether, using lithiuml% sodium dispersion in ether/THF.¹⁵
- 15. J.J. Eisch and A.M. Jacobs, J. Org. Chem., 28, 2145 (1963).
- 16. The stereochemical assignments were confirmed by epimerization studies, which afforded all four davanone diastereomers as previously reported.^{6a}

(Received in USA 6 January 1983)