Application of t-Butyldimethylsilyl Ethers of Serine, Threonine and Tyrosine in **Peptide** Synthesis

Peter M. Fischer Nycomed Bioreg AS. Gaustadalleen 21, N-0371 Oslo, Norway

Abstract: The utility of Tbdms (*t*-butyldimethylsilyl) ethers, prepared conveniently in a one-pot procedure from N^{α} -Fmoc (9-fluorenylmethoxycarbonyl) and N^{α} -Z (benzyloxycarbonyl) hydroxyamino acids, is demonstrate & peptide bond formation and esterification to 4-alkoxybenzylalcohol resin are achieved readily with these derivatives. The lability of the Tbdms ethers to various reagents enables selective deprotection of the hydroxyl side-chains after peptide chain assembly, desirable, e.g., for phosphorylation or glycosilation.

Traditionally, the side-chain **hydroxyl** functions in **Ser**, Thr and Tyr have been protected as **Bu**^t ethers in solid-phase **peptide** synthesis (SPPS) based on N^{α} -Fmoc protection and **CF₃COOH-labile** resin linkage agents. When a more acid-labile hydroxyl protecting group is required, the corresponding trityl ethers can be used'. Alternatively, side-chain unprotected **Fmoc-Ser-OH²**, **Fmoc-Thr-OH³** and **Fmoc-Tyr-**OH' can be incorporated directly into **peptides** under certain conditions. The *O*-trimethylsilyl protecting group has been discussed' but is not suitable since it 'is removed under the conditions of **peptide** bond formation. The Tbdms ether is very important as a protecting group in general organic synthesis⁶ but has not found general application in **peptide** chemistry.

	Scheme 1	
i		ii
R-Xaa-OR'	–. R-Xaa(R'')-OR'	——. R-Xaa(R'')-OH
la; R=Z, R'=p-NO,Bn	2a; R=Z, R'=p-NO,Bn, R"=Bu'	3a; R=Fmoc, R"=Bu ^t
lb; R=Fmoc, R'= Me/Et	2b; R=Fmoc, R'=Me/Et, R"=Bu'	
lc; R=Fmoc, R'=Bn	2c; R=Fmoc, R'=Bn, R"=Bu ^t	
1d; R=Fmoc, R'=phenacyi (Pha)	2d; R=Fmoc, R'=Pha, R"=Bu'	
le; R=Fmoc, R'=H	2e; R=Fmoc, R'=R"=Tbdms	3e; R=Fmoc, R"= Tbdms
1f; R=Z, R'=H	2f; R=Z, R'=R"=Tbdms	3f; R=Z, R"=Tbdms

Reagents: i; a - d: (CH₃)₂C=CH₂/H₂SO₄ or Cl₃(Bu'O)C=NH/BF₃.Et₂O, e & f: Tbdms-Cl, N-methylimidazole (MeIm), DMF; ii; a, H₂/Pd(C) then Fmoc-Cl/Et₃N, b, 2 % Na₂CO₃ H₂O/MeCN then Fmoc-Cl/Et₃N, c, H₂/Pd(C), d, Zn/AcOH; e & f, pH 4 (Xaa stands for Ser, Thr or Tyr residue).

Although the Fmoc-amino acid **Bu**^t ethers 3a are used widely in **SPPS**, their preparation is inconvenient' and the commercial products are expensive. Temporary protection of both the amino and **carboxyl** functions in 1 is necessary during *t*-butylation⁸. Usually this is achieved with the aid of **benzyl** esters (e.g. la or c) which can subsequently be removed by **hydrogenolysis**⁹. Because of the uncertain stability of the Fmoc group in 2c to hydrogenolytic conditions¹⁰, the Z group (2a) is usually preferred for the etherification step before Pmoc-reprotection. Alternatively, carboxyl protection as an **alkyl** ester" is

f f t i d l b etherified directly, prov e е С v n b е а m а y e from **2b** during subsequent base hydrolysis". We find that carboxyl-protection as the phenacyl ester" **2d** is even more convenient because these esters can be prepared" easily from the Fmoc-amino acids **le** directly and, unlike saponification of the alkyl esters **2b**, selective deprotection with zinc in acetic acid is very effective and there is no danger of racemisation ¹⁵. Silylation of **le** or **f** yielded the silyl ether-esters 2eand **f**, which were transformed without isolation to the silvl ethers **3e** and f^{16} . Apparently the silvl esters 2e are more acid-sensitive than usual" although even non-acidid solvolysis can remove some Tbdms esters". Unlike the Bu' ethers **3a**, the silvl ethers 3e can thus be obtained in a one-pot reaction sequence from **le** directly.

Even when the hydroxysmino acid residues are incorporated into growing **peptide** chains without side-chain protection, the conditions required for the esterification of the commonly used SPPS supports with Ser. Thr **and** Tyr derivatives obviously still necessitates masking of the hydroxyl function. For this reason the utility of **3e** for resin esterification was studied (Table 1). Both the Ser and Thr derivatives could be anchored successfully using the conventional dicyclohexylcarbodiimide (**DCC**)/4-dimethylaminopyridine (**DMAP**) method". The Tyr derivative, on the other hand, failed to react with DCC but could be **anchored** using a different **method**²⁰ with the aid of Castro's **reagent**²¹. The levels of racemisation were found to be comparable to results obtained with **3a**²².

Table 1. Esterification of 4-alkoxybenzylalcohol peptide synthesis resin."				
Derivative used for esterification	% Incorporation ^b	Racemisation [°] (% <i>D</i> - or <i>D-allo</i> isomer)		
Fmoc-Ser(Tbdms)-OH	98″	0.4		
Fmoc-Thr(Tbdms)-OH	82 ^d	1.5		
Fmoc-Tyr(Tbdms)-OH	76"	1.2		

· Aliquots of PepSyn KA resun (MilliGen; 0.1 meg/g) were esterified.

^b Measured by amino acid analysis of esterified and Fmoc-deprotected resin samples and comparison with resininternal Nle content.

 Measured by Fmoc-deprotected amino acid resin derivatisation with 1-fluoro-2,3-dinitrophenyl-5-L-alanine amide before resin detachment and chromatography of released dipeptides²³.

^d Esterification with 5 eq preformed symmetrical anhydride in the presence of 0.5 eq DMAP and 5 eq N-methyl morpholiae (NMM) in DMF (2 x 30 min).

• Esterification with 5 eq amino acid derivative in the presence of 5 eq BOP (benzotriazole-1-yl-oxy-(dimethylamino)-phosphonium hexatluorophosphate), 0.5 eq DMAP and 5 eq NMM in DMF for 18 h.

Table 2 shows that the silvl ethers of **Ser and** Thr are somewhat more labile to acidolysis by **CF₃COOH than** the corresponding Bu' ethers. For the Tyr derivatives the situation is reversed, the silvl ether being almost resistant to dilute **CF₃COOH** in **CH₂Cl₂** whereas the Bu' ether is removed efficiently. Selective deprotection of **Tyr(Bu')** in the presence of **Tyr(Tbdms)** should be possible if the conditions are chosen carefully. Under the hydrolytic conditions applied, the **Bu'** ethers are completely stable, whereas the silvl ethers of Ser and Thr can be removed smoothly. The Tyr silvl ether is again more resistant. When fluoride **ions²⁴** are used to effect Tbdms deprotection, the reactivities of the derivatives **varies²⁵**. It can be seen that for the relatively acid-stable aromatic silvl ether the fluoride treatment is very effective. Therefore, if complete deprotection of Tyr(Tbdms)-containing **peptides** is desired, it is advisable to remove

the N-terminal Fmoc group²⁶ and the aromatic Tbdms silyl ester simultaneously with Bu^a_4NF prior to peptide resin detachment with CF₃COOH. The Tbdms ether groups were found to be stable to piperidine, as well as to other basic reagents used in SPPS, such as DMAP, 1,8-diazabicyclo[5.4.0]undec-7-ene end $Pr_3^iNEt^{27}$.

Table 2. Deprotection of Tbdms ethers.								
Deprotection Conditions'	°C % O-Tbdms or O-Bu' Deprotection ^b					n ^b		
			Serine	,	Threoni	ne	Tvŗo	sine
			Tbdm	s Bu'	Tbdms	Bu'	Tbdms	Bu ^t
1% CF,COOH, CH,Cl,	15	22	19					
25 %CF,COOH, CH,CL	15	22		< 1	42	14	2	43
35 % CF,COOH, CH,CL	30	22					3	> 99
anhydrous CF,COOH			100	95	100	99	46	100
, <u>,</u> ,				100		100	80	
							> 99	
3:1:1AcOH/THF/H.O			27		9		< 1	
			53		27		3	
			99	0	96	0	18	0
			100		80		17	
Bu ⁿ .NF.			47		2		100	
- 4 ,			72		6			
			91	0	8	0		0
			100	0	36	-		
			100		> 99			
20 % Piperidine, DMF	1080	22	0		0		0	
Substantal - LUM	mana in such stade	and man a second	una a h anu	mmon to a	a la rese			

[•][Substrate]=1μM; were incubated a with 1 mixtures shown prior to analysis.

^b Determined by integration of RP-HPLC analysis peaks (Nova-Pak C,., 3.9x150 cm, 1 mL/min, 40 to 80 % MeCN in 0.1 % CF₃COOH/H₂O over 10 min, λ=245 nm); the Fmoc-amino acid derivatives were used for the acidolysis/ hydrolysis conditions and the Z-amino acid ethers for the other experiments.

The Z-hydroxyamino acid Tbdms ethers were **reacted** with one equivalent of **H-Val-OEt.HCl** in **DMF** using **BOP/HOBt/NMM chemistry²⁸**. The reactions were monitored by TLC and found to be practically complete within minutes. The analytically pure dipeptides were obtained in > 90 % isolated yield after silica gel chromatography and no racemisation was detected upon RP-HPLC analysis of the *O*-deprotected dipeptides.

Side-chain protecting groups	HPLC R [*]	Yield ⁶	Purity°		
Ser/Tnr/Tyr(Bu [°]), Asn(Trt)	0.32°, 0.50'	77 %	96 %		
Ser/Thr/Tyr(Tbdms), Asn(Trt)	0.32^d , 0.50'	84 %	93%		
D. I. fraction man callested I suthant		and an elevelation	and the second second second		

Table 3. SPPS of peptide H-Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr-OH.

Peak fractions were collected and authenticated variously using ammo acid analysis, gas-phase sequencing and FAB-MS. Chromatography at 1 mL/min with MeCN gradients in 0.1% CF₃COOH in H₂O, λ =220 nm.

^b Determined **by** quantitative amino **acid** analysis of the **products from known** quantities of **peptidyl** rosin.

^o Measured chromatographically.

^d Aquapore butyl, 4.6x220 cm, 0 to 30 % MeCN over 30 min.

• Vydac 201TP54, 4.6x250 cm, 2.5 to 12 % MeCN over 30 min.

A peptide rich in hydroxyamino acid residues was synthesised using two different approaches. In one experiment commercial Fmoc-Tyr-OPepSyn KA resin and Fmoc-Xaa(Bu')-OH's were used, in the other experiment Fmoc-Tyr(Tbdms)-OPepSyn KA prepared as described above and the Fmoc-Xaa(Tbdms)-OH's were used. In each case 4 eq of the amino acid derivatives were coupled for 1 h using the above coupling conditions and **deprotection/resin** cleavage was achieved with 5 % **PhSMe** in **CF₃COOH** for 2 h. In the Tbdms synthesis **the** last **Fmoc-deprotection was** effected for 15 min with 0.1 M **Bu^a₄NF** in **DMF**. The results in Table 3 show the efficacy of the Fmoc-amino acid Tbdms ethers in **SPPS**.

References and Notes

- 1. Barlos, K.; Gatos, D.; Koutsogianni, S.; Schäfer, W.; Stavropoulos, G.; Wenging, Y.; Tetrahedron Left., 1991, 32,471.
- 2. Otvos, L.; Elekes, I.; Lee, V. M.-Y.; Znt J. Peptide Protein Res., 1989, 34, 129.
- 3. Fischer, P.M.; Retson, K.V.; Tyler, M.I.; Howden, M.E.H.; Znt. J. Peptfde Protein Res., 1991, 38, 491.
- 4. Kitas, E.; Knorr, R; Trzeciak, A.; Bannwarth, W.; Helv. Chim. Acta, 1991, 74, 1314.
- Hirschmann, R.; Schwam, H.; Strachan, R.G.; Schoenewaldt, E.F.; Barkemeyer, H.; Miller, S.M.; Conn, J.B.; Garsky, V.; Veber, D.F.; Denkewalter, R.G.; J. Am. Chem. Soc., 1971, 93, 2746.
- Greene, T.W.; Wutn, P.G.M.; 'Protective Groups in Organic Synthesis', 2nd Ed, J. Wiley & Sons, Inc., New York, 1991, p. 77.
- 7. Bodanszky, M.; 'Principles of Peptida Synthesis', Springer-Verlag, Berlin, 1984, pp. 126-130.
- Callahan, F.M.; Anderson, G.W.; Paul, R; Zimmerman, J.E.; J. Am. Chem. Soc., 1963, 85, 201. Armstrong, A.; Brackenridge, I.; Jackson, R.F.W.; Kirk, J.M.; Tetrahedron Lett., 1988, 29, 2483.
- Wünsch, E.; Jentsch, J.; Chem. Ber., 1964, 97, 2490. Chang, C.-D.; Waki, M.; Ahmad, M.; Meinhofer, J.; Lundell, E.O.; Haug, J.D.; Znt. J. Peptfde Protein Res., 1980, 15, 59.
- Atherton, E.; Bury, C.; Sheppard, R.C.; Williams, B.J.; *Tetrahedron Lett.*, **1979**, 3041. Martinez, J.; Tolle, J.C.; Bodanszky, M.; J. Org. *Chem.*, **1979**, *44*, 3596.
- 11. Schröder, E.; Ltebfgs Ann. Chem., 1963, 670, 127.
- 12. Adamson, J.G.; Blaskovich, M.A.; Groenevelt, H.; Lajoie, G.A.; J. Org. Chem., 1991, 56, 3447.
- 13. Stelakatos, G.C.; Paganou, A.; Zervas, L.; J. Chem. Soc. (C), 1966, 1191.
- 14. The intermediates 1d are obtained from le with phenacyl bromide and Prⁱ₂NEt in EtOAc. After treatment for 10 d with isobutylene in the usual fashion, 2d are obtained. Treatment with 10 eq Zn powder in AcOH overnight, evaporation and crystallisation from CH₂Cl₂/hexanes, afforded analytically pure 3a in 70 80 % overall yield.
- 15. Hendrickson, J.B.; Kendall, C.; Tetrahedron Lett., 1970,343.
- 16. le or 1f (1 eq), Tbdms-Cl (5 eq) and MeIm (10 eq) are stirred in DMF (5 mL/mmol) under N₂ at room temperature for 18 h. The mixtures are evaporated, suspended in H₂O and acidified to pH 4 with 10 % aq citric acid. After extraction into Et₂O and evaporation, the analytically pure Tbdms ethers 3e or f are obtained by flash chromatography (Still, W.C.; Kahn, M.; Mitra, A.; J. Org. Chem., 1978, 43, 2923) using 5 to 10 % MeOH in CH₂Cl₂ as the eluant. The Fmoc-derivatives 3e as amorphous solids without definded m.p.'s (except Fmoc-Tyr(Tbdms)-OH, m.p. 208-210 °C) and the Z-derivatives 3f as oils.
- 17. Evens, B.E.; Rittle, K.E.; Homnick, C.F.; Springer, J.P.; Hirshfield, J.; Veber, D.F.; J. Org. Chem., 1985, 4615.
- Vacca, J.P.; Guare, J.P.; deSolms, S.J.; Sanders, W.M.; Giuliani, E.A.; Young, S.D.; Darke, P.L.; Zugay, J.; Sigal, LS.; Schleif, W.A.; Quintero, J.C.; Emini, E.A.; Anderson , P.S.; Huff, J.R.; *J. Med. Chem.*, 1991, 34, 1225.
- Chang, C.D.; Meinenhofer, J.; Znt. J. Peptfde Protein Res., 1978, 11, 246. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C.J.; Sheppard, R.C; Williams, B.J.; J. Chem. Soc. Chem. Commun., 1978,537.
- 20. Echner, H.; Voelter, W.; Liebigs Ann. Chem., 1988, 1095.
- 21. Castro, B.; Dormoy, J.R.; Evin, G.; Salve, C; Tetrahedron Lett., 1975, 1219.
- 22. Akaji, K.; Kuriyama, N.; Kimura, T.; Fujiwara, Y.; Kiso, Y.; *Tetrahedron Lett.*, 1992, 33, 3177. Mergler, M.; Nyfeler, R.;. Gosteli, J.; Tanner, R.; *ibid.*, 1989, 30, 6745.
- 23. Adamson, J.G.; Hoang, T.; Crivici, A.; Lajoie, G.A.; Anal. Biochem., 1992, 202, 210.
- Corey, E.J.; Venkateswarlu, A.; J. Am. Chem. Soc., 1972, 94, 6190. Carpino, L.A.; Sau, A.C.; J. Chem. Soc., Chem. Commun., 1979,514.
- Collington, E.W.; Finch, H.; Smith, I.J.; Tetrahedron Lett., 1985, 26, 681. Wetter, H.-J.; Oertle, K.; ibid., 1985, 26, 5515.
- 26. Ueki, M.; Amemiya, M.; Tetrahedron Left, 1987, 28, 6617.
- Aizpurua, J.M.; Palomo, C.; Tetrahedron Lett., 1985, 26, 475. Chaudhary, S.K.; Hernandez, 0.; *ibid.*, 1979, 99. Lombardo, L.; *ibid.*, 1984, 25, 227.
- 28. Hudson, D.; J. Org. Chem., 1988, 53, 617.

(Received in UK 19 August 1992)