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Abstract: The synthesis of phenyl-resorcinarenes and pyrogallolarenes is known to produce a 

conformational mixture of cone and chair isomers. Depending on the synthesis conditions the 

composition of the conformational mixture is variable; however, the cone conformer is the greatest 

proportion of phenyl-resorcin[4]arenes and chair conformer of pyrogallol[4]arenes. The 

experimental evidence suggests that phenyl-substituted resorcinarene and pyrogallolarene exist as 

a dynamic boat in solution. 
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1. Introduction 

Among the macromolecules there are specific groups with chemical and structural 

characteristics that have attracted attention in recent years in different fields of research. An 

interesting example is the Calixarenes family—in particular resorcinarenes and pyrogallolarenes 

[1]—which can be obtained by reactions between aldehydes and resorcinol or pyrogallol, 

respectively, the latter being the main difference between the two types of macrocycles (Scheme 1). 

Using different phenols for the synthesis leads to different properties; for example, resorcinarenes 

have two active sites on the upper rim (position 2 and hydroxyl groups), where the macromolecule 

can be functionalized or derivatized. A different case occurs with pyrogallolarenes, which only have 

hydroxyl groups on the upper rim, which restricts their derivation possibilities somewhat as 

compared with resorcinarenes. In both cases, the cyclocondensation reaction is performed under acid 

catalysis conditions [2–4], which has the advantage of a low cost together with a minimum of 

synthetic steps, in addition to a minimum variation in the synthetic design of the macrocyclic 

molecules with different chemical functions [5]. 
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Scheme 1. Synthesis of resorcinarenes and pyrogallolarenes. 

An interesting aspect of this type of compound is that it can adopt different structural isomers. 

This often depends on the reaction conditions or the type of aldehyde used and the reaction time [6]. 

Among the most prominent isomers are those of the cone and boat type, thanks to the fact that they 

are more stable and are usually obtained in greater proportion when the synthesis is carried out [7,8]. 

The influence of the substituent on the lower rim can influence the type of conformation that can be 

obtained. In this way, resorcinarenes with aliphatic substitutions on the lower rim exhibit the same 

cone-type isomers as the majority, while the resorcinarenes that have aromatic substitutions show 

cone-chair-type isomeric mixtures, in which their relationship varies depending on the synthesis 

conditions [9]. With respect to pyrogallolarenes, the products obtained in the synthesis with aliphatic 

aldehydes show a tendency for the formation of cone isomers in greater proportion. On the other 

hand, those synthesized from aromatic aldehydes show a preference for producing chair-type 

isomers [10,11]. Even so, as with resorcinarenes, there are some cases where the tendency changes or 

an isomeric mixture is produced, depending on the synthesis conditions [12]. 

The cone and boat isomers have structural properties that have been beneficial in the vast majority 

of applications, due to the fact that these forms have an electron-rich cavity [13], which can interact 

with other molecules or analytes in such a way that they can stay within these macrocycles. Another 

important feature is that their hydroxyl groups, both in resorcinarenes and pyrogallolarenes, have an 

upward orientation, which sometimes can form supramolecular assemblies through hydrogen 

bonds, such as capsules or aggregates. These bonds commonly established between the upper edges 

of resorcinarenes or pyrogallolarenes are not unique forms such as supramolecular structures—there 

are also assemblies where agents such as solvents [14], coordinating metals [15,16] and covalent 

bonds [17,18] exist. There are several applications where resorcinarenes and pyrogallolarenes have 

contributed to significant advances, basically due to their versatility, both in synthesis and derivatives 

and in their molecular structure itself. A field where they have been widely used is host-guest systems 

[19–21], since the electron-rich cavity of cone-type isomers allows different types of interactions with 

molecules [22] to be established, especially with tetraalkylammonium-type salts or metal cations 

[23,24]. This has led to different areas of applications, such as sensors [25], catalysis [26,27], heavy 

metal complexes for purification of water tributaries [28–30] and chemical separations by 

modification of Hight Performance Liquid Chromatography (HPLC) columns [31–34], among 

others. 

The aforementioned applications are possible because the polyhydroxylated platforms undergo 

conformations and conformational interconversions in solution [35], which allows host-guest 

interactions. For example, the conformation of resorcinarenes can be rigidified into a cone by linking 

the hydroxyl groups of the upper rim, which provides a higher degree of preorganization. 

Nevertheless, in solution the rccc isomer may adopt cone and boat conformations [36–38], which 
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interconvert rapidly at room temperature. Studies of the conformational properties of resorcinarenes 

modified on the lower rim show that the most stable conformer in solution is cone and this trend is 

favored by bulky substituents in the macrocyclic ring [39]. 

Continuing with our studies of the structure of polyhydroxylated platforms [12,33,40,41], we 

found that the bulky aromatic substituents on the lower rim of polyhydroxylated platforms in cone 

conformation exhibited a dynamic behavior, which stimulated interest in examining the 

conformational preferences. For this purpose, in this article, the comparative behavior of C-

tetra(phenyl)-resorcin[4]arene (1) and C-tetra(phenyl)pyrogallol[4]arene (2) compounds is studied 

using 1H-NMR and 13C-NMR data and dynamic 1H-NMR spectra. 

2. Results and Discussion 

2.1. Synthesis and Separation of Conformers 

As mentioned in the introduction, we chose C-tetra(phenyl)-resorcin[4]arene (1) and C-

tetra(phenyl)pyrogallol[4]arene (2) in order to explore the dynamic behavior of cone conformers in 

dimethyl sulfoxide and acetonitrile. In this way, the obtaining of 1 and 2 was done according to the 

procedure described in the literature, through the acid-catalized cyclocondensation of benzaldehyde 

with resorcinol or pyrogallol, respectively [8,9]. The synthesis was carried out through the acid-

catalyzed cyclocondensation of phenol with benzaldehyde in ethyl alcohol at reflux condition. In the 

reaction (Scheme 2), two products were obtained (Supplementary Material, Figures S1 and S10, which 

were used for dynamic nuclear magnetic resonance (NMR) studies after separation. 

 

Scheme 2. Synthesis of tetra(phenyl) pyrogallol[4]arene and resocin[4]arene. 

In the 1H-NMR spectrum of 1a (Figure S3), individual assignments of the protons were made 

based on their positions, multiplicities, integral values and comparison of spectral data with reported 

values of similar compounds [12,40]. In this way, the 1H-NMR spectrum of 1a displayed the 

characteristic signal of a methine bridge at 5.63 ppm. In the aromatic region, normally the ortho- and 

meta-protons of resorcinarene moiety attached to a hydroxyl group produce separate signals and the 

ortho-protons are shielded by hydroxyl groups, while the meta-protons are unshielded and resonate 

in the upfield region. Given this, the hydrogen of the tetrasubstituted resorcinol units appears at 6.32 

and 6.15 ppm, respectively. The signals at 6.97 and 6.75 were attributed to the hydrogen in the 

aromatic ring of the phenyl substituent on the lower rim. Finally, the signal at 8.53 ppm was assigned 

to hydroxyl groups in the molecule. As mentioned above, resorcinarenes can exist in conformations 

of various symmetries; in this way, in the first product formed the 1H-NMR showed the characteristic 

signals for the cone conformation (diastereomer rccc). Initially in our case, the signals indicate the 

existence of highly symmetric cone conformation in solution if the 1H-NMR spectrum of 1a is 

recorded at 333 K but if the 1H-NMR spectrum of 1a is recorded at room temperature, the signals 

allowed inferring the presence of other conformations, as will be analyzed later. The 13C-NMR 

spectrum in DMSO-d6 (figure S4) exhibited nine signals, which agree with the structure of compound 

1a, that is, it displayed eight signals for the aromatic systems and the signal at 41.6 ppm confirmed 

the presence of a methyne-bridge fragment between the aromatic rings, signal assignment was 

confirmed using the 2D-NMR-HSQC spectrum (Figure S5). 

The second product 1b, obtained in the synthesis, exhibited absorptions for C-O stretching (1159 

cm−1), an aromatic ring (1614 cm−1) and the hydroxyl groups (3318 cm−1) in the FT-IR spectrum (Figure 

S7). The 1H-NMR spectrum (Figure S8) displayed the characteristic signal of a methine-bridge 
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fragment between the aromatic rings (5.56 ppm) and the aromatic hydrogen of the tetrasubstituted 

resorcinol unit at 6.12 and 6.22 ppm for the protons in the ortho position and the signal at 6.61 ppm 

for meta-protons, the signals at 6.84 were attributed to the hydrogen in the aromatic ring of the phenyl 

substituent on the lower rim. Finally, the signals at 8.57 and 8.46 ppm were assigned to two types of 

hydroxyl groups in the molecule. The signals observed in 13C-NMR spectrum are consistent with the 

structure (Figure S9). 

The reaction of pyrogallol with benzaldehyde was carried out under the same conditions. After 

12 h in reflux, Thin Layer Chromatography (TLC) analysis of the reaction mixture showed two 

products corresponding to the conformational mixture—cone (2a) and chair (2b) (Figure S11). Then 

the separation of cone and chair conformers was carried out by using the solvent-extraction technique. 

The 1H-NMR spectrum of product 2a (Figure S13) exhibited two single peaks, at 7.77 and 7.65 

ppm, corresponding to two classes of hydroxyl groups, signals corresponding to the pyrogallol 

residues—the first signal corresponds to a hydroxyl group in position 2 and the second signal for the 

hydroxyl group in positions 1 and 3. Additionally, all the patterns were consistent with the structure 

of the expected cone conformer 2a. On the other hand, the spectrum of product 2b (Figure S17) 

exhibited four different hydroxyl moieties, at 7.86, 7.67, 7.56 and 7.45 ppm, corresponding to two 

classes of hydroxyl groups attached to pyrogallol residues in the macrocyclic system. Careful analysis 

of all the patterns confirmed the structure of chair conformer 2b. The increase of signals in the 13C-

NMR spectrum also confirmed the chair conformation (Figure S18). A comparison of the NMR 

spectra for the two isomer types is shown in Figure 1. 

 

Figure 1. Comparative 1H-NMR spectra of de products 2a and 2b in DMSO-d6 at room temperature. 

2.2. Dynamic 1H-NMR Studies 

As mentioned above, if the 1H-NMR spectrum in DMSO-d6 of 1a was recorded at room 

temperature, the signal in the aromatic region at 6.32 ppm was observed as a broad signal. This fact 

was interesting, because this behavior is characteristic of a dynamic system in solution. In order to 

establish this behavior in DMSO-d6 initially, the 1H-NMR spectrum was recorded at a temperature of 

333 K (Figure 1), observing that this signal was better defined, so it was decided to perform a dynamic 

study at variable temperature. As shown in Figure 2, at the lowest temperature, the spectrum of 

Compound 1a in the aromatic region (resorcinol residue) exhibited four signals—two for aromatic 
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protons on the upper rim at 6.55 and 6.20 ppm and two signals for the protons on the lower rim at 

6.00 and 6.15 ppm. 

 

Figure 2. Dynamic study of tetra(phenyl)-resorcin[4]arene (1a) in MeCN-DMSO-d6 mixture. 

The 1H-NMR spectra of conformer 1a at 253.15 K was consistent with the presence of two 

conformers that exhibited two resonances for a flattened ring and two resonances for an opposite 

ring. This observation prompted a detailed study of the NMR spectra. It has been well established 

that the conformation of the resorcinarene skeleton can be assigned in solution by a comparison of 

the chemical shift for the arene resonance in other analogues macrocycles, because the protons in the 

flattened ring are more shielded. In this way, flattened cone A and flattened cone B (Figure 3) are 

possible conformations in DMSO-d6 for this macrocyclic system, which is confirmed by other areas 

of the spectrum, which are consistent with this conformational assignment. In the same way, in 

DMSO, the spectrum obtained at 268.15 K shows coalescence of the peaks in the aromatic zone, 

particularly for resorcinol ring signals, confirming a very dynamic interconversion system between 

the conformers flattened cone A and flattened cone B. 

At other temperatures (283.15, 298.15 and 333.15 K), aromatic protons in ortho- and meta-

positions of the resorcinol unit are sensitive to the chemical environment of the different 

conformations, as has been observed in other similar systems and is favored by the interaction with 

the solvent. In this way, the 1H-NMR spectrum of 1a in DMSO showed mixed conformations, 

according to the following signals—two protons in the aromatic region (6.32 and 6.15 ppm) indicate 

a high degree of conformational equilibrium between cone and flattened cone (A and B) conformers 

for diastereomer rccc (Figure 3). 
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Figure 3. Dynamic behavior of 1a and 2a. 

1H-NMR spectrum of 2a in DMSO-d6 at 293.15 K is characteristic of the cone conformation and 

this change when the temperature decreases (Figure 4). At 248.15 K, the spectrum showed two 

resonances consistent with the presence of two conformers—flattened cone A and flattened cone B 

(Figure 3), which showed one resonance at 6.00 ppm for a flattened pentasubstituted pyrogallol unit 

and one resonance at 6.60 ppm for an opposite pentasubstituted pyrogallol unit and the spectrum 

obtained at 273.15 K shows coalescence of these peaks in the aromatic zone. Similarly, and as seen 

with compound 1a, these observations suggest that the compound exists in two forms in solution, 

cone and flattened cone conformers. In DMSO-d6, 1b showed a similar pattern of signals and this 

confirms the presence of the two conformers with very small differences with respect to their 

coalescence temperatures. 

 

Figure 4. Dynamic study of tetra(phenyl)-pyrogallol[4]arene (2a) in MeCN-DMSO-d6 mixture. 

According to the known experimental evidence for aliphatic resorcinarenes and 

pyrogallolarenes, those exhibit a rigid cone(rccc) structure at room temperature in solution and solid 

state [42,43] which is established due to the intramolecular hydrogen bonds in the upper rim. In 

contrast with the behavior of platforms with aliphatic substituent, the experimental evidence for 

platforms 1a and 1b showed that they have a dynamic behavior in solution, this behavior can be due 
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to loss of intramolecular hydrogen bonds on the upper rim, the existence of π-π interactions of the 

aromatic system in the lower rim and polar··· π, C-H···π [44,45] between solvent molecules and 

aromatic system permitting a temporal rearrangement of the macrocycle. 

3. Materials and Methods 

Infrared (IR) spectra were recorded on a ThermoFisher Scientific Nicolet iS10 Fourier transform 

infrared (FTIR) spectrometer with a monolithic Diamond, Attenuated Total Reflection (ATR) 

accessory and absorption in cm−1 (Thermo Scientific, Waltham, MA, USA). 1H and 13C-NMR spectra 

were recorded at 400 MHz on a Bruker Advance 400 instrument. Molar mass was determined with 

Agilent 6470 triple quadrupole mass spectrometer. RP–HPLC analyses were performed on a 

Chomolith® C18 column (Merck, Kenilworth, NJ, USA, 50 mm), using an Agilent 1200 Liquid 

Chromatograph (Agilent, Omaha, NE, USA). Chemical shifts are reported in ppm, using the solvent 

residual signal. Melting points were measured on a Stuart apparatus (Cole-Parmer, Stafford, UK) and 

are not corrected. The elemental analysis for carbon and hydrogen was carried out using a Thermo 

Flash 2000 elemental analyzer (Thermo Scientific, Waltham, MA, USA). 

3.1. Synthesis of Tetra(phenyl)-pyrogallol[4]arene and Resorcin[4]arene 

Synthesis of C-tetra(phenyl)-pyrogallol[4]arene. A Pyrogallol solution (5 mmol) in 10 mL of 

ethanol was added dropwise to 0.4 mL of concentrated chlorine acid (37%), the mixture was stirred 

at 0 ºC for 5 min and then 0.5 mL of benzaldehyde (5 mmol) was added dropwise. After 10 min, the 

mixture was heated to 70–80 °C and refluxed for 12 h and the solid precipitate was filtered and 

washed with a mixture of water and ethanol (1:1), producing a pink solid (569 mg) at 56% yield, 

which was characterized by means IR, 1H-NMR and 13C-NMR and used for separation experiments. 

Conformation separation. The separation of boat and chair conformers was carried out by using 

the solvent-extraction technique with mixtures of solvents such as ethyl acetate, water and ethanol. 

The crude mixture (200 mg) was stirred in 10 mL of a mixture of solvents (ethyl acetate, ethanol and 

water, at a ratio of 2:1:1, respectively) for 10 min and the suspended solid was separated by filtration, 

dried and used for conformational studies, whereupon it was determined to be in the chair conformer 

configuration. The mixture of solvents was removed by evaporation, resulting in a second red solid 

that exhibited the boat conformation. 

C-tetra(phenyl)pyrogallol[4]arene (boat) m.p. > 350˚C IR (ATR/cm−1): 3300–3600 (broad), 1630, 1500, 

1464, 1368, 1282, 1247, 1209, 1064, 1015, 163, 699, 566, 416 cm−1; 1H-NMR (400 MHz, DMSO-d6): δ 7.77 

(s, 4H, OH); 7.65 (s, 8H, OH); 6.95–6.96 (m, 12H, Ar); 6.76–6.77 (m, 8H, Ar); 6.04 (s, 4H, Ar); 5.78 (s, 

4H, CH). 13C-NMR (100 MHz, DMSO-d6): δ (ppm) 145.4; 142.0; 131.8; 128.6; 127.0; 124.5; 121.3. 41.3. 

Calcd. For C52H40O12 (%) C 72.89; H 4.72; O 22.41. Found: C 73.85; H 4.67; O 21.49. 

C-tetra(phenyl)pyrogallol[4]arene (chair) m.p. > 350 ̊ C IR (ATR/cm−1): 3300–3600 (broad), 1630, 1500, 

1464, 1368, 1282, 1247, 1209, 1064, 1015, 163, 699, 566, 416; 1H-NMR (400 MHz, DMSO-d6): δ 7.86 (s, 

2H, OH); 7.67 (s, 2H, OH); 7.56 (s, 4H, OH); 7.45 (s, 4H, OH), 6.84 (s, 12H, Ar); 6.60 (d, J = 8 Hz, 8H, 

Ar); 6.01 (s, 2H, Ar); 5.67 (s, 4H, CH); 5.20 (s, 2H, Ar). 13C-NMR (100 MHz, DMSO-d6): δ (ppm) 143.8; 

141.9; 141.6; 131.8; 131.3; 128.7; 126.7; 124.2; 122.4; 121.5; 121.4; 119.8; 42.6. Calcd. For C52H40O12 (%) C 

72.89; H 4.72; O 22.41. Found: C 73.52; H 4.21; O 21.91. 

Synthesis of C-tetra(phenyl)-resorcin[4]arene. A resorcinol solution (10 mmol) in 20 mL of ethanol 

was added to 10 mmol of benzaldehyde, the mixture was stirred at 90 °C and 2.5 mL of concentrated 

hydrochloric acid (37%) was added dropwise. The solution was refluxed for 6 h and the precipitated 

solid was filtered and washed with ethanol, producing a green solid at 86% yield. The green powder 

was dried and used for 1H-NMR analysis. Water was added to the ethanol used in the reaction and 

washed by inducing the precipitate. The obtained solid was filtered, washed with water and was 

recrystallized from acetonitrile. The second yellow solid at 14% yield was dried and used for 

conformational studies. 
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C-tetra(phenyl)-resorcin[4]arene(boat) m.p. > 300 ˚C IR (KBr/cm−1): 3300–3600 (broad), 1600, 1470, 

1440, 1380, 1340, 1210, 1260, 1150, 850, 740, 700; 1H-NMR(400MHz, DMSO-d6): δ 8.53 (s, 8H, OH); 6.98–

6.96 (m, 12H, Ar); 6.75–6.74 (m, 8H, Ar); 6.32 (br s, 4H, CH meta to OH); 6.15(s, 4H, CH orto to OH); 

5.63 (s, 4H, CH). 13C-NMR(100 MHz, DMSO-d6) δ (ppm): 152.4; 145.6, 130.7 ; 128.4; 126.8; 124.3; 120.5; 

102.2; 41.6. 

C-tetra(phenyl)-resorcin[4]arene(chair) m.p. > 300 ˚C IR (KBr/cm−1): 3300–3600 (broad), 1600, 1470, 

1440, 1380, 1340, 1210, 1260, 1150, 850, 740, 700; 1H-NMR(400MHz, DMSO-d6): δ 8.52 (s, 4H, OH); 8.41 

(s, 4H, OH); 6,80 (s, 12H, Ar) ; 6.57 (s, 8H, Ar); 6.31 (s, 4H, Ar); 6.08 (s, 2H, Ar); 5.52 (s, 2H, Ar); 5.49 

(s, 4H, CH). 13C-NMR (100 MHz, DMSO-d6) δ (ppm): 152.7; 152.5; 144.7; 131.7; 129.1; 128.9; 126.9; 

124.3; 121.0; 120.6; 101.6; 42.1. 

3.2. Dynamic Studies 

The dynamic studies were carried out by using 1H-NMR. The solids 1a and 2a were dissolved in 

a mixture of solvents such as DMSO-d6 and acetonitrile (MeCN). The solution was cooled within a 

range of 296.15 K to 258.15 K taking 1H-NMR spectra each 5 or 10 K. 

4. Conclusions 

C-tetra(phenyl)-resorcin[4]arene and C-tetra(phenyl)-pyrogallol[4]arene were synthesized as 

conformational mixtures composed of the boat and the chair isomers. The analysis of the 

conformational mixture showed the formation of cone isomers in a greater proportion for the C-

tetra(phenyl)-resorcin[4]arene, while for C-tetra(phenyl)-pyrogallol[4]arene, the chair isomer had the 

greater proportion. The dynamic studies in the solution phase showed that structures 1a and 2a are 

a dynamic boat in the solution phase, in contrast with previous studies, where the structure was 

reported as a cone conformer. The dynamic behavior is a consequence of absence of intramolecular 

hydrogen bonds on the upper rim, as an effect of the aromatic substituent on the lower rim. 

Supplementary Materials: The following are available online: Figure S1: 1H-NMR spectrum DMSO-d6 

conformational mixture(1a and 1b), Figure S2: IR Spectrum of tetra(phenyl)-resorcin[4]arene(1a), Figure S3: 1H-

NMR spectrum-DMSO-d6 of tetra(phenyl)-resorcin[4]arene(1a), Figure S4: 13C-NMR spectrum- DMSO-d6 of 

tetra(phenyl)-resorcin[4]arene(1a), Figure S5: 2D-NMR-HSQC spectrum-DMSO-d6 of tetra(phenyl)-

resorcin[4]arene(1a), Figure S6: Dynamic 1H-NMR study for tetra(phenyl)-resorcin[4]arene(1a), Figure S7: IR 

Spectrum of tetra(phenyl)-resorcin[4]arene(1b), Figure S8: 1H-NMR spectrum-DMSO-d6 of tetra(phenyl)-

resorcin[4]arene(1b), Figure S9: 13C-NMR spectrum of tetra(phenyl)-resorcin[4]arene (1b), Figure S10: 1H-NMR 

spectra of boat(rccc)(1a), Figure S11: 1H-NMR spectrum DMSO-d6 conformational mixture(2a and 2b) and 

chair(rctt)(1b), Figure S12: IR Spectrum of tetra(phenyl)-pyrogallol[4]arene(2a), Figure S13: 1H-NMR spectrum-

DMSO-d6 of tetra(phenyl)-pyrogallol[4]arene(2a), Figure S14: 13C-NMR spectrum-DMSO-d6 of tetra(phenyl)-

pyrogallol[4]arene(2a), Figure S15: Dynamic 1H-NMR study for tetra(phenyl)-pyrogallol[4]arene(2a), Figure S16: 

IR Spectrum of tetra(phenyl)-pyrogallol[4]arene(2a), Figure S17: 1H-NMR spectrum-DMSO-d6 of tetra(phenyl)-

pyrogallol[4]arene(2b), Figure S18: 13C-NMR spectrum-DMSO-d6 of tetra(phenyl)-pyrogallol[4]arene(2b), Figure 

S19: 1H-NMR spectra of conformational mixture, boat(rccc)(2a) and chair(rctt)(2b) isomers. 

Author Contributions: Designed the research, M.M.V.; performed the experiments and collected the data, 

analyzed the results and corrected and edited the manuscript, M.M.V., J.L.C.-H. and M.Á.V.S. All authors 

contributed to the preparation of the manuscript and have read and agreed to the published version of the 

manuscript. 

Funding: This research was funded by Department of Science, Technology and Innovation COLCIENCIAS 

(Colombia). grant conv. 727. 

Acknowledgments: We wish to thank the Universidad Nacional de Colombia and José Luis Casas-Hinestroza 

acknowledge the Administrative Department of Science, Technology and Innovation COLCIENCIAS 

(Colombia) for his Ph.D. grant conv. 727. 

Conflicts of Interest: The authors declare no conflict of interest. 

  



Molecules 2020, 25, 2275 9 of 11 

 

References 

1. Scott, M.; Sherburn, M. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 

2017, 337–374, doi:10.1016/b978-0-12-409547-2.12475-8. 

2. Han, J.; Song, X.; Liu, L.; Yan, C. Synthesis, crystal structure and configuration of acetylated aryl 

Pyrogallol[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59, 257–263, doi:10.1007/s10847-007-9323-2. 

3. Yasmin, L.; Coyle, T.; Stubbs, K.A.; Raston, C.L. Stereospecific synthesis of resorcin[4]arenes and 

pyrogallol[4]arenes in dynamic thin films. Chem. Commun. 2013, 49, 10932, doi:10.1039/c3cc45176c. 

4. Pfeiffer, C.; Feaster, K.A.; Dalgarno, S.J.; Atwood, J. Syntheses and characterization of aryl-substituted 

pyrogallol[4]arenes and resorcin[4]arenes. CrystEngComm 2016, 18, 222–229, doi:10.1039/C5CE01792K. 

5. Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102, 

doi:10.1070/rc2011v080n01abeh004127. 

6. Patil, R.S.; Zhang, C.; Atwood, J. Process development for separation of conformers from derivatives of 

resorcin[4]arenes and pyrogallol[4]arenes. Chem. Eur. J. 2016, 22, 15202–15207, doi:10.1002/chem.201603090. 

7. Tunstad, L.M.; Tucker, J.A.; Dalcanale, E.; Weiser, J.; Bryant, J.A.; Sherman, J.C.; Helgeson, R.C.; Knobler, 

C.B.; Cram, D.J. Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. J. Org. 

Chem. 1989, 54, 1305–1312, doi:10.1021/jo00267a015. 

8. Hoegberg, A.G.S. Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J. Org. 

Chem. 1980, 45, 4498–4500, doi:10.1021/jo01310a046. 

9. Hoegberg, A.G.S. Cyclooligomeric phenol-aldehyde condensation products. 2. Stereoselective synthesis 

and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols. J. Am. Chem. 

Soc. 1980, 102, 6046–6050, doi:10.1021/ja00539a012. 

10. Yan, C.-G.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave irradiation assisted synthesis, alkylation 

reaction and configuration analysis of aryl pyrogallol[4]arenes. Tetrahedron 2007, 63, 9614–9620, 

doi:10.1016/j.tet.2007.07.043. 

11. Chen, J.; Chen, W.; Yan, C. Microwave Assisted Efficient Synthesis and Crystal Structures ofO-

Hexadecalkylated Pyrogallol[4]arenes. Chin. J. Chem. 2009, 27, 1703–1706, doi:10.1002/cjoc.200990286. 

12. Casas-Hinestroza, J.L.; Villamil, M.M. Conformational Aspects of the O-acetylation of C-

tetra(phenyl)calixpyrogallol[4]arene. Mol. 2018, 23, 1225, doi:10.3390/molecules23051225. 

13. Timmerman, P.; Verboom, W.; Reinhoudt, D.N. Resorcinarenes. Tetrahedron 1996, 52, 2663–2704, 

doi:10.1016/0040-4020(95)00984-1. 

14. Morales-Morales, D.; Gómez-Benítez, V.; Toscano, R.A. Quasi-Complete Solvation of C-

Phenylcalix[4]resorcinarene in the Crystalline State. Single Crystal X-ray Diffraction Study. J. Incl. Phenom. 

Macrocycl. Chem. 2004, 50, 199–202, doi:10.1007/s10847-004-6103-0. 

15. Kumari, H.; Mossine, A.V.; Kline, S.R.; Dennis, C.L.; Fowler, D.A.; Teat, S.J.; Barnes, C.L.; Deakyne, C.A.; 

Atwood, J. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chem. Int. Ed. 

2012, 51, 1452–1454, doi:10.1002/anie.201107182. 

16. Fowler, D.A.; Mossine, A.V.; Beavers, C.M.; Teat, S.J.; Dalgarno, S.J.; Atwood, J.L. Coordination Polymer 

Chains of Dimeric Pyrogallol[4]arene Capsules. J. Am. Chem. Soc. 2011, 133, 11069–11071, 

doi:10.1021/ja203651v. 

17. Beyeh, N.K.; Valkonen, A.; Rissanen, K. Piperazine Bridged Resorcinarene Cages. Org. Lett. 2010, 12, 1392–

1395, doi:10.1021/ol100407f. 

18. Makeiff, D.; Sherman, J.C. A Six-Bowl Carceplex That Entraps Seven Guest Molecules. J. Am. Chem. Soc. 

2005, 127, 12363–12367, doi:10.1021/ja0520621. 

19. Kazakova, E.K.; Ziganshina, A.Y.; Muslinkina, L.A.; Morozova, J.E.; Makarova, N.A.; Mustafina, A.R.; 

Habicher, W. The Complexation Properties of the Water-Soluble 

Tetrasulfonatomethylcalix[4]resorcinarene toward α-Aminoacids. J. Incl. Phenom. Macrocycl. Chem. 2002, 43, 

65–69, doi:10.1023/a:1020404220640. 

20. Waidely, E.; Pumilia, C.; Malagon, A.; Vargas, E.F.; Li, S.; Leblanc, R.M. Host–Guest Complexation of a 

Pyrogallol[4]arene Derivative at the Air–Water Interface. Langmuir 2015, 31, 1368–1375, 

doi:10.1021/la504841u. 

21. Hong, M.; Zhang, Y.-M.; Liu, Y. Selective Binding Affinity between Quaternary Ammonium Cations and 

Water-Soluble Calix[4]resorcinarene. J. Org. Chem. 2015, 80, 1849–1855, doi:10.1021/jo502825z. 



Molecules 2020, 25, 2275 10 of 11 

 

22. Ballester, P.; Biros, S.M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible 

Inclusion and Encapsulation Complexes. In The Importance of Pi-Interactions in Crystal Engineering; Wiley, 

2012; pp. 79–107. 

23. Puttreddy, R.; Beyeh, N.K.; Taimoory, S.M.; Meister, D.; Trant, J.F.; Rissanen, K. Host–guest complexes of 

conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and 

computational studies. Beilstein J. Org. Chem. 2018, 14, 1723–1733, doi:10.3762/bjoc.14.146. 

24. Al’Tshuler, G.N.; Fedyaeva, O.N.; Ostapova, E. The reaction ofC-phenylcalix[4]resorcinarene-based 

polymer with quaternary ammonium and potassium cations. Russ. Chem. Bull. 2000, 49, 1468–1470, 

doi:10.1007/bf02495099. 

25. Kumar, S.; Chawla, S.; Zou, M.C. Calixarenes based materials for gas sensing applications: a review. J. Incl. 

Phenom. Macrocycl. Chem. 2017, 88, 129–158, doi:10.1007/s10847-017-0728-2. 

26. Catti, L.; Tiefenbacher, K.; Pöthig, A. Host-Catalyzed Cyclodehydration-Rearrangement Cascade Reaction 

of Unsaturated Tertiary Alcohols. Adv. Synth. Catal. 2017, 359, 1331–1338, doi:10.1002/adsc.201601363. 

27. Zhang, Q.; Catti, L.; Kaila, V.R.I.; Tiefenbacher, K. To catalyze or not to catalyze: elucidation of the subtle 

differences between the hexameric capsules of pyrogallolarene and resorcinarene† †Electronic 

supplementary information (ESI) available. See DOI: 10.1039/c6sc04565k Click here for additional data file. 

Chem. Sci. 2016, 8, 1653–1657, doi:10.1039/c6sc04565k. 

28. Eisler, D.J.; Puddephatt, R.J. Structure and Dynamics of Tetrakis(thiophosphinato)resorcinarene 

Complexes of Silver(I), Gold(I) and Palladium(II). Inorg. Chem. 2006, 45, 7295–7305, doi:10.1021/ic060865z. 

29. Ngurah, B.I.G.M.; Jumina; Anwar, C. Synthesis and Application of C-Phenylcalix[4]resorcinarene in 

Adsorption of Cr(III) and Pb(II). J. Appl. Chem. Sci. 2016, 3, 289–298, doi:10.22341/jacs.on.00301p289. 

30. Al-Trawneh, S.A. Studies on Adsorptive Removal of Some Heavy Metal Ions by Calix[4]Resorcine. Jordan 

J. Earth Environ. Sci. 2015, 7, 1–9. 

31. Li, N.; Harrison, R.G.; Lamb, J.D. Application of resorcinarene derivatives in chemical separations. J. Incl. 

Phenom. Macrocycl. Chem. 2013, 78, 39–60, doi:10.1007/s10847-013-0336-8. 

32. Pietraszkiewicz, O.; Pietraszkiewicz, M. Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase 

Coated with Calix[4]resorcinarene. J. Incl. Phenom. Macrocycl. Chem. 1999, 35, 261–270, 

doi:10.1023/a:1008151100076. 

33. Velásquez-Silva, B.A.; Aguirre, A.A.C.; Rivera-Monroy, Z.J.; Villamil, M.M. Aminomethylated 

Calix[4]resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. 

Polym. 2019, 11, 1147, doi:10.3390/polym11071147. 

34. Zhang, H.; Dai, R.; Ling, Y.; Wen, Y.; Zhang, S.; Fu, R.; Gu, J. Resorcarene derivative used as a new 

stationary phase for capillary gas chromatography. J. Chromatogr. A 1997, 787, 161–169, doi:10.1016/s0021-

9673(97)00613-4. 

35. Thondorf, I.; Brenn, J.; Böhmer, V. Conformational properties of methylene bridged resorcarenes. 

Tetrahedron 1998, 54, 12823–12828, doi:10.1016/s0040-4020(98)00771-6. 

36. Rumboldt, G.; Böhmer, V.; Botta, B.; Paulus, E.F. Rational Synthesis of Resorcarenes with Alternating 

Substituents at Their Bridging Methine Carbons. J. Org. Chem. 1998, 63, 9618–9619, doi:10.1021/jo981864u. 

37. Abis, L.; Dalcanale, E.; Du Vosel, A.; Spera, S. Nuclear magnetic resonance elucidation of ring-inversion 

processes in macrocyclic octaols. J. Chem. Soc. Perkin Trans. 2 1990, 2075, doi:10.1039/p29900002075. 

38. Konishi, H.; Morikawa, O. Conformational properties of octahydroxy[1.4]metacyclophanes with 

unsubstituted methylene bridges. J. Chem. Soc., Chem. Commun. 1993, 34, doi:10.1039/c39930000034. 

39. Knyazeva, I.R.; Sokolova, V.I.; Gruner, M.; Habicher, W.D.; Syakaev, V.V.; Khrizanforova, V.; Gabidullin, 

B.M.; Gubaidullin, A.T.; Budnikova, Y.; Burilov, A.R.; et al. One-step synthesis of rccc- and rctt-

diastereomers of novel calix[4]resorcinols based on a para-thiophosphorylated derivative of benzaldehyde. 

Tetrahedron Lett. 2013, 54, 3538–3542, doi:10.1016/j.tetlet.2013.04.114. 

40. Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z.J.; Pérez-Redondo, A.; Villamil, M.M. Crystal structure 

and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene. J. Mol. Struct. 2017, 1137, 380–

386, doi:10.1016/j.molstruc.2017.02.059. 

41. Aguirre, A.A.C.; Rivera-Monroy, Z.J.; Villamil, M.M. Selective O-Alkylation of the Crown Conformer of 

Tetra(4-hydroxyphenyl)calix[4]resorcinarene to the Corresponding Tetraalkyl Ether. Mol. 2017, 22, 1660, 

doi:10.3390/molecules22101660. 

42. Gareth W. V. CaveCurrent address: School of Biom; Ferrarelli, M.C.; Atwood, J.L.; Cave, G.W.V. Nano-

dimensions for the pyrogallol[4]arene cavity. Chem. Commun. 2005, 2787, doi:10.1039/b413829e. 



Molecules 2020, 25, 2275 11 of 11 

 

43. Kulikov, O.V.; Negin, S.; Rath, N.P.; Gokel, G.W. Morphologies of branched-chain pyrogallol[4]arenes in 

the solid state. Supramol. Chem. 2014, 26, 506–516, doi:10.1080/10610278.2013.860228. 

44. Fagnani, D.; Sotuyo, A.; Castellano, R. π–π Interactions. In Comprehensive Supramolecular Chemistry II; 

Elsevier BV, 2017; Vol. 1, pp. 121–148. 

45. Mahadevi, A.S.; Sastry, G.N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825, 

doi:10.1021/cr500344e. 

Sample Availability: Samples of the compounds 1a, 2a, 1b and 2b are available from the authors. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


