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Abstract 

The in silico VolSurf+ descriptors, accounting for both cationic and anionic structural features of 

ionic liquids (ILs). were used to develop a Partial Least Squares (PLS) model able to establish a 

Quantitative Structure Property Relationship (QSPR) correlation with their solvatochromic dye Nile 

Red polarity. The PLS model allowed prediction of ENR values for 116 ILs providing an in silico 

ILs polarity database.  
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1. Introduction  

Ionic liquids (ILs), organic salts formed of an organic cation and an inorganic or organic anion, are 

nowadays a very popular class of compounds due to their versatility in applications which, from 

their original use as reaction media, soon expanded to many others.1 Their low melting point made 

them widely adopted as reaction media originally considered as “green” solvents due to their low 

volatility, as well as to their high chemical and thermal stability.  

As reaction media, they can exert very different effects. Indeed, ILs can affect reaction mechanisms 

inducing different pathways with respect to conventional organic solvents2,3 or, alternatively, they 

can exert a kinetic effect giving products with higher yields in significantly lower reaction times 

and/or temperatures.4 

Given the huge number of cation/anion combinations, a large variety of solvent systems having 

different properties can be obtained. This may simultaneously represent an advantage and a 

detriment. Although a wide range of solvents would be in principle available for the same process, 

the lack of knowledge of solvent properties and the effort required to perform experimental 

investigations makes the selection of a suitable solvent for a given process or reaction a hard task. 

Hence the need to predict solvent properties by Quantitative Structure Property Relationships 

(QSPR) models based on in silico structural descriptors. In this context a new opportunity is 

provided by the VolSurf+ approach,5,6 which uses information coded into 3D GRID Molecular 

Interaction Fields (MIFs)7-10 to derive physicochemical molecular descriptors such as molecular 

size and shape, hydrophilic and hydrophobic properties, hydrogen bonding, amphiphilic moments, 

critical packing parameters and pharmacokinetic descriptors related to solubility, metabolic stability 

and cell permeability. 

The VolSurf+ procedure has been successfully applied in QSAR studies to predict a wide variety of 

biological properties such as structure–permeation relationships,5 antitumour activities,11-13 

phospholipidosis induction14,15 and more recently the aquatic toxicity of ionic liquids.16 

In the ionic liquids field VolSurf+ descriptors take into account several cationic ILs structural 

features such as heterocyclic aromatic and non-aromatic cores, alkyl chain length, presence of 

oxygen atoms in the substituents as well as physicochemical properties of various inorganic and 

organic anions.  

In this study we wish to verify if VolSurf+ descriptors, designed for in silico modelling of 

biological activities, could be suitable for the prediction of an important ILs property such as 

solvent polarity. A recent review, examining several approaches to computational chemistry used 

with ILs17 and pointing out the utility of combining computational and experimental approaches, 
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confirms that the proposed methodology, widely adopted in medicinal chemistry and industrial 

experimental design, has not been previously applied for modelling ILs physico-chemical 

properties. 

Among solvent properties, polarity is one of the most widely used and different empirical scales 

known. In general, both neutral and charged probes have been used, for example the Kosower18 and 

Reichardt19,20 scales adopt pyridinium betaine dyes as polarity probes, while a neutral “sensor” dye 

Nile Red (NR) exhibits bathocromic shifts above 100 nm.  

As far as ILs are concerned, interesting experimental studies on the determination of ILs dielectric 

constants have been carried out by Weingaertner and coworkers.21-24 

The use of empirical scales to evaluate their polarity has been the object of an intense debate. 

Indeed, the response of the probe to the solvent is determined by all possible solvent-solute 

interactions, and in the case of ionic solvents media, some can play a more significant role than 

others. Polarity of ILs has been determined using single-molecules as spectroscopic probes, taking 

advantage of the effects they are able to exert on electronic absorption, fluorescence and vibrational 

spectra, as well as on paramagnetic resonance signals.25 

In the case of UV-Vis active probes, both charged and neutral “sensors” have been used. 

Consequently, the polarity of ILs has been evaluated using pyridinium betaine dyes, transition-

metal complexes such as [Cu(acac)(tmen)]+, merocyanine probes and Nile Red (NR). In particular, 

NR has been used not only to evaluate the polarity of ILs by means of the ENR parameter, but also 

to have information about their 3-dimensional organization as neat solvents or in combination with 

other ILs or conventional organic solvents to give binary mixtures.26,27 More than a decade ago, 

Seddon et al. reported a pioneering study on NR polarity of 1-alkyl-3-methylimidazolium ILs28  and 

showed that their polarity is comparable with that of the lower alcohols. This paper points out  “a 

paucity of good reproducible data” and the need “to create a reliable database”. 

Studies relating different ILs structures29 and  structural variations in both cationic and anionic 

moieties to ILs  polarity30 using the empirical Kamlet–Taft solvent parameters have been reported. 

In this context we here report the polarity of 18 ILs with different aromatic and non-aromatic 

cationic scaffolds, different alkyl chain length and different anions and develop a Quantitative 

Structure Property Relationships (QSPR) model based on VolSurf+ descriptors with the aim to 

predict ENR values for a large number of commonly used ILs. 
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Scheme 1. Structure of ILs and of the solvatochromic probe used. 

 

 

2. Results and Discussion 

In Table 1 we report both literature31-33 and experimental ENR values for 18 ILs (see Scheme 1) with 

different cationic and anionic structural features: mainly imidazolium cationic scaffolds (plus one 

piperidinium and one pyrrolidinium), different length alkyl side chains (up to 8 carbon atoms), and 

8 anions ranging from tetrafluoroborate to oxygenated anions. 

The PLS analysis was carried out using a 18x176 descriptor matrix including 18 ILs (Table 1)  and 

176 variables (128 cation and 48 anion VolSurf+ descriptors)16 and the ENR polarity as the response. 

The analysis provided a 3 PLS components model (see Table 2) explaining 93.2% of y variance (Q2 

= 0.770) where the 1st and the 2nd PLS components explain already 88.1% of y variance (Q2 = 

0.728). The plot of predicted vs. experimental data (Fig. 1) shows a good agreement between 

experimental and predicted ENR values. 
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Table 1. Experimental ENR values for ILs used as learning and test set and PLS predictions. 

 
Ionic Liquids 

ENR 

(Kcal/mol) 

ENR
a
 

(Kcal/

mol) 

PLS 

pred. 
DModX

b
 Name 

1 IM1-(1Ph) (CF3SO2)2N 216.2
c
  216.3 1.54 

1-Benzyl-3-methylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide 

2 IM12 (CF3SO2)2N 217.9
d
  217.8 1.07 

1-Ethyl-3-methylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

3 IM14 (1O)2PO2 218.0
e
  217.8 0.63 1-Butyl-3-methylimidazolium dimethyl phosphate 

4 IM14 N(CN)2 215.7
f
  215.6 0.74 1-Butyl-3-methylimidazolium N-cyanocyanamide 

5 IM14 PF6 217.7
 f
 218.5 217.5 0.79 1-Butyl-3-methylimidazolium hexafluorophosphate  

6 IM14 (CF3SO2)2N 218.2
f
 218.0 217.8 0.85 

1-Butyl-3-methylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

7 IM14 BF4 217.3
d
 217.2 217.2 0.86 1-Butyl-3-methylimidazolium tetrafluoroborate  

8 IM14 CF3COO 216.6
e
  216.9 1.01 1-Butyl-3-Methylimidazolium trifluoroacetate 

9 IM14 1COO 217.2
e
  217.3 1.57 1-Butyl-3-methylimidazolium acetate 

10 IM14-2Me (CF3SO2)2N 217.7
d
  218.0 0.92 

1-Butyl-2,3-dimethylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

11 IM16 N(CN)2 215.3
f
  215.1 0.70 1-Hexyl-3-methylimidazolium dicyanamide 

12 IM16 (CF3SO2)2N 217.9
d
  217.3 0.84 

1-Hexyl-3-methylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

13 IM16 SbF6 216.1
d
  216.8 1.03 1-Hexyl-3-methylimidazolium hexafluoridoantimonate 

14 IM18 (CF3SO2)2N 217.9
d
  217.7 0.61 

1-Methyl-3-octylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

15 IM18 N(CN)2 215.7
 f
  215.5 1.07 1-Methyl-3-octylimidazolium dicyanamide 

16 IM4-(1Ph) (CF3SO2)2N 216.1
c
  216.4 1.41 

1-Benzyl-3-butylimidazolium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide 

17 Pip14 (CF3SO2)2N 219.0
d
  219.5 0.87 

1-Butyl-1-methylpiperidinium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide  

18 Pyr14 (CF3SO2)2N 219.9
d
  219.6 0.77 

1-Butyl-1-methylpyrrolidinium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide 

19 IM1-10 BF4 
 

219.2 216.9 1.40 1-Decyl-3-methylimidazolium tetrafluoroborate  

20 IM16 PF6 
 

216.8 217.0 0.87 1-Hexyl-3-methylimidazolium hexafluorophosphate  

21 IM16 BF4 
 

216.8 216.7 0.96 1-Hexyl-3-methylimidazolium tetrafluoroborate  

22 IM18 PF6 
 

217.6 217.4 0.86 1-Methyl-3-octylimidazolium hexafluorophosphate  

23 IM18 BF4 
 

217.7 217.1 1.01 1-Methyl-3-octylimidazolium tetrafluoroborate  

N1 IM14 NO3 
 

215.3 212.3 35.32 1-Butyl-3-methylimidazolium nitrate 

N2 IM16 NO3 
 

216.3 211.8 35.28 1-Hexyl-3-methylimidazolium nitrate 

N3 IM18 NO3 
 

217.4 212.2 35.29 1-Methyl-3-octylimidazolium nitrate 

a Ref. 28; b DModX values indicate the distance of the observations to the X-model hyperplane.34 Predictions for ILs 
with DModX > 1.32  should be considered with caution; cRef. 31; dRef. 32; eThis work; fRef. 33. 
 

Table 2. PLS model parameters for the 3 extracted principal components (PCs). 

PC R
2
X R

2
X(cum) R

2
Y R

2
Y(cum) Q

2
 Q

2
(cum) 

1 0.295 0.295 0.756 0.756 0.603 0.603 

2 0.234 0.529 0.126 0.881 0.315 0.728 

3 0.128 0.657 0.051 0.932 0.153 0.770 
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SIMCA (Soft Independent Modelling of Class Analogy)34 models are soft models applicable within 

the experimental space covered by the observations (in the present case ILs) considered in the 

analyzed data matrix. Therefore the prediction affordability for each single IL depends on its 

structural similarity with the structures of the ILs considered in the model derivation. The PLS 

model predictions are reported in Table 1 together with DModX values, the model residuals in the 

X matrix, providing an estimate of the similarity of a new observation (IL) to the training set 

observations. Predictions for ILs exhibiting DModX values higher than 1.32 should be considered 

with some caution,34 the higher the DModX value, the lower the prediction reliability. 

 

 

Figure 1. PLS correlation plot reporting the experimental and the corresponding predicted ENR 
values for ILs 1-18. 

 

In order to check the experimental reliability of the model predictions, the ENR values reported by 

Seddon28 are also reported as a test set in Table 1. It has been noted35 that although the Kamlet–Taft 

parameters are well established for traditional solvents, for ILs they are very sensitive to 

impurities.36 However, in the present case, the ENR values used as a learning set were determined in 

the presence of 1,4-dioxane. As previously reported, the comparison with literature values outline 

that the co-solvent presence has a negligible effect.32 This statement is further supported by the 

agreement between the ENR values measured by us with literature ones28 for three ILs (Table 1) 

which indicates a remarkable inter-laboratory reproducibility.  

The PLS model predictions for the test set are in agreement with the experimental data in Table 1. 

Predictions for objects with high DModX values, such as ILs with nitrate anions absent in the 

learning set, are definitely unreliable. A possible interpretation of this result might rely on both 

anion geometry and size. Anions used in this study exhibit different geometries, as well as different 

ionic radii, comparable for [BF4
-] and [PF6

-] anions (232 and 240 pm, respectively) but significantly 

lower for [NO3
-] (179 pm) which determines a different charge distribution. Anyway, a specific 
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effect which renders nitrate modelling more difficult might be responsible for their peculiar 

behaviour. 

As far as 1-decyl-3-methylimidazolium tetrafluoroborate is concerned, the poor agreement between 

experimental and predicted values could be ascribed to segregation effects, which heavily depend 

on the alkyl chain length.37,38 On the grounds of the above effects, the fluorescent probe could feel 

different polar and apolar microenvironments, more evident for decylimidazolium, than for 

octylimidazolium tetrafluoroborate. 

The PLS model predictions were extended to ENR values for a higher number of ILs (up to 116) 

exhibiting DModX values lower than 2.0 in Table S2.  

In addition to its prediction potentiality, the PLS model allows us to evaluate quantitatively the 

importance of the VolSurf+ descriptors (Table S1 in ESI) in determining the ENR values by means 

of their VIP (Variables Importance for the Projection) values.  

Table 3 reports the VIP  values for the top 75 descriptors, together with the coefficients referring to 

the 1st PLS component (the most relevant one) providing information on the sign of the descriptor 

contribution. 

 
Table 3. VIP  values for the top 75 descriptors together with the coefficients of the 1st PLS 
component. VIP values describe the importance of each X-variable both in modeling the objects 
and in relation to the Y response. The coefficients values express the sign and the magnitude of the 
contribution between the Xs and the Y.  

 

Var ID 
VIP 

values 

Coeff. 

Values 

1 D3_Cat 1.80 -0.022 

2 CP_Cat 1.80 -0.022 

3 D5_Cat 1.78 -0.022 

4 VD_Cat 1.78 -0.022 

5 D4_Cat 1.78 -0.022 

6 D6_Cat 1.77 -0.022 

7 CD1_Cat 1.77 -0.022 

8 CD2_Cat 1.77 -0.022 

9 CD3_Cat 1.74 -0.021 

10 CACO2_Cat 1.73 0.021 

11 CD4_Cat 1.71 -0.021 

12 D7_Cat 1.70 -0.021 

13 D2_Cat 1.69 -0.021 

14 CD7_Cat 1.66 -0.021 

15 CD8_Cat 1.64 -0.021 

16 CW2_Cat 1.62 -0.020 

17 CD6_Cat 1.62 -0.020 

18 CD5_Cat 1.61 -0.020 

19 PSA_Cat 1.60 -0.019 
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20 D8_Cat 1.60 -0.020 

21 D1_Cat 1.58 -0.019 

22 D8_An 1.58 -0.019 

23 CD8_An 1.58 -0.019 

24 CD6_An 1.55 -0.018 

25 CD7_An 1.55 -0.018 

26 W2_Cat 1.54 -0.019 

27 D6_An 1.53 -0.018 

28 D7_An 1.52 -0.018 

29 CD5_An 1.51 -0.018 

30 CW1_Cat 1.48 -0.018 

31 CD4_An 1.47 -0.017 

32 D5_An 1.45 -0.017 

33 W3_Cat 1.39 -0.018 

34 D4_An 1.35 -0.016 

35 CW3_An 1.35 -0.016 

36 S_An 1.35 0.016 

37 V_An 1.34 0.016 

38 G_An 1.33 0.015 

39 CW3_Cat 1.32 -0.016 

40 W1_Cat 1.32 -0.015 

41 CW2_An 1.32 -0.015 

42 IW4_An 1.32 -0.015 

43 CW5_An 1.30 -0.015 

44 ID4_Cat 1.29 -0.014 

45 W5_An 1.26 -0.015 

46 R_An 1.25 0.014 

47 DD1_Cat 1.24 -0.012 

48 FLEX_Cat 1.24 -0.013 

49 W1_An 1.21 0.014 

50 SOLY_Cat 1.20 0.013 

51 LgS3_Cat 1.20 0.013 

52 LgS4_Cat 1.20 0.013 

53 LgS5_Cat 1.20 0.013 

54 LgS6_Cat 1.20 0.013 

55 LgS7_Cat 1.20 0.013 

56 LgS7,5_Cat 1.20 0.013 

57 LgS8_Cat 1.20 0.013 

58 LgS9_Cat 1.20 0.013 

59 LgS10_Cat 1.20 0.013 

60 LgS11_Cat 1.20 0.013 

61 L0LgS_Cat 1.20 0.013 

62 LgBB_Cat 1.19 0.012 

63 G_Cat 1.18 -0.013 

64 DRDRDR_Cat 1.16 -0.013 

65 DD2_Cat 1.15 -0.011 

66 FLEX_RB_Cat 1.11 -0.013 
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67 CW4_An 1.11 -0.013 

68 DD3_Cat 1.10 -0.009 

69 A_An 1.10 0.013 

70 S_Cat 1.10 -0.011 

71 HSA_Cat 1.09 -0.011 

72 MW_Cat 1.09 -0.012 

73 CW1_An 1.06 -0.012 

74 V_Cat 1.05 -0.010 

75 DIFF_Cat 1.01 0.009 

 

VIP values give an indication (in absolute values) of what variables in the X block (VolSurf+ 

descriptors) are relevant to determine the dependent variable (polarity of ILs). Table 3 shows that 

the major influence on the response is provided by cation descriptors, especially by those related to 

their hydrophobic character (hydrophobic volumes Dn and hydrophobic capacity factors CDn at 

different energy levels). A lower contribution is given by cationic descriptors referring to a general 

hydrophilic character (hydrophilic volumes indicating polarizability W1-W4 and hydrophilic 

capacity factors  CW1-CW3) and water solubility (intrinsic solubility SOLY and solubility at 

various pH LgSs).  The latter descriptors show a positive contribution to the ENR values (as 

expressed by the relative coefficients), whereas the former are inversely correlated to the responses, 

indicating that molecular polarizability (expressed by W1-W3) in ILs contribute to decrease the 

response, whereas ILs able to be dissolved in water have higher ENR values. Similar considerations 

can be done for the corresponding anionic hydrophobic character (D4-D8 and CD4-CD8) and 

hydrophilic (W1,W5 and CW1-CW5) character descriptors. In particular, a positive contribution is 

found for anionic size descriptors (molecular globularity G, molecular volume V, molecular surface 

S and volume/surface ratio R), in agreement with the considerations made to rationalize the 

peculiarity of [NO3
-]-based ionic liquids. 

In Fig. 2 we report the PC1 vs. PC2 scores plot displaying in the same chemical space the 18 ILs 

and ENR (the y response). In the upper right quadrant ILs with a non-aromatic heterocyclic scaffold 

are located very close to ENR showing that they positively influence the response (i.e. exhibit higher 

ENR values). Moreover the shorter the side chain (i.e. more water soluble ILs located in the lower 

right part of the plot) the higher the ENR values. When considering different ILs with the same 

cation (IM14) the anions size plays a relevant role evidenced by the second component, in 

agreement with the positive contribution of the anionic size descriptors: the higher the PC2 score, 

the higher the ENR value.  
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Figure 2. PC1 vs. PC2 scores plot  reporting the ILs 1-18 together with y-response: this plot can 
show similarities and dissimilarities among the objects (ILs) and allows to interpret how they are 
related to the response (ENR variable) along the 1st and the 2nd PLS components. 
 

The above considerations show that the present QSPR approach, considering simultaneous 

variations in both the cation (heterocyclic core and side chain length) and the anion structural 

features by means of 176 ILs descriptors is able to provide an estimate of their importance and a 

tentative interpretation of their physico-chemical  significance in relation to the polarity of ILs. It is 

perhaps worth mentioning here that attempted correlations with Kosower and Reichardt empirical 

solvent parameters were not satisfactory probably due to the ionic structure of the solvatochromic 

dyes which in solution with ILs implies the presence of two cations and two anions, a condition 

quite difficult to be modelled. A neutral “sensor” such as Nile Red simplifies the above picture 

rendering in silico modelling possible. 
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3. Conclusions 

VolSurf+ descriptors, accounting for both cationic and anionic structural features of ILs were used 

to develop a PLS model able to establish a QSPR correlation with their solvatochromic dye Nile 

Red polarity. The PLS model allowing prediction of ENR values provided an in silico ILs polarity 

database for over 100 ILs. The above database including structurally different ILs with similar 

polarity provides the possibility to select an optimal IL according not only to its polarity but also to 

other properties such as synthetic affordability, environmental sustainability in its life cycle and 

economic considerations. The same approach, using readily available descriptors and an accessible 

statistical procedure such as PLS, could be extended to develop QSPR models for other relevant ILs 

physico-chemical properties. 

 

4. Experimental 

4.1 Synthesis and characterization of ILs 

[IM14][(1O)2PO2], was purchased and used without any other purification. [IM14][CF3COO] and 

[IM14][1COO] were obtained by anion exchange on resin starting from corresponding halide as 

following reported. All ionic liquids were dried on a vacuum line at 60 °C for at least 2 h before 

use, then stored in a dryer under argon and over calcium chloride. In all cases, the silver nitrate test 

performed to verify the presence of residual halide anion, gave a negative result. 

 

4.1.1  General procedure for anion exchange on resin. The Amberlite resin IRA-400 (16 g) was 

converted from chloride form to hydroxide form by eluting an aqueous solution of NaOH (10 mL, 

10% w/v) within a column. Subsequently the resin was washed with water until the eluate was 

neutral. The halide salt (10 mmol), dissolved in methanol/water (70/30, v/v), was eluted, and the 

eluate collected into a flask containing a solution of the corresponding acid in stoichiometric 

amount, until neutralization. The resulting solution was concentrated in vacuo, then treated with 

activated charcoal in ethanol. Filtration and removal of the solvent afforded the ionic liquids as 

viscous oils in high to quantitative yields. 

1-Butyl-3-methylimidazolium trifluoroacetate ([IM14][CF3COO]). 

Pale yellow oil. Yield: 94%. 

νMAX  (Nujol) 3150, 3095, 2970, 2880, 1700 cm-1 
1H NMR (300 MHz, d6-DMSO): δ=9.34 (s, 1 H), 7.91 (d, J=24 Hz, 2 H), 4.33 (t, J=8 Hz, 2 H),  

4.01 (s, 3H), 1.93 (quint, J=7.6 Hz, 2 H), 1.40 (quint, J=7.6 Hz, 2 H), 1.07 (t, J=7.6 Hz, 3 H) ppm.   
13C NMR (300 MHz, d6-DMSO): δ= 158.0, 139.4, 125.3, 122.1, 50.4, 37.1, 30.9, 30.2, 22.4, 17.6 

ppm. 
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1-Butyl-3-methylimidazolium acetate. ([IM14][1COO]). 

Pale yellow oil. Yield: 99%. 

νMAX  (Nujol) 3150, 3095, 2970, 2880, 1700 cm-1 
1H NMR (300 MHz, d6-DMSO): δ=9.73 (s, 1 H), 7.88 (d, J=21 Hz, 2 H), 4.24 (t, J= 7.6 Hz, 2 H), 

3.92 (s, 3 H), 1.82 (quint, J=7.5 Hz, 2 H), 1.64 (s, 3 H), 1.29 (quint, J=7 Hz, 2 H), 0.95 (t, J=7 Hz, 3 

H) ppm. 13C NMR (300 MHz, d6-DMSO) δ= 172.9, 137.4, 123.7, 122.4, 59.2, 48.5, 35.7, 25.9, 

18.9, 13.4 ppm. 

 

4.2 ENR measurements 

The determination of polarity parameter ENR was carried out by mixing into a quartz cuvette 

(optical path 0.2 cm), 500 µL of IL and 75 µL of a concentrated solution of spectroscopic probe in 

1,4-dioxane. The concentration of the probe was equal to 2.0 · 10-4 M. The obtained solution was 

thermostated at 298 K. 

 

4.3 Computational Methods 

In VolSurf+, the GRID7 force field was chosen to characterize potential polar and hydrophobic 

interaction sites around target molecules by the water (OH2), the hydrophobic (DRY), the carbonyl 

oxygen (O) and amide nitrogen (N1) probes. The information contained in the resulting MIFs is 

transformed into a quantitative scale by calculating the volume or the surface of the interaction 

contours. In particular, the VolSurf+ procedure consists of the generation of the 3D molecular fields 

from the interactions of the OH2, DRY, O and N1 probes around a target molecule, next the 

calculation of descriptors from the 3D maps obtained in the first step. The definition of all 128 

VolSurf+ descriptors is given in case studies5,14,15,39-45 and with the previous versions of VolSurf.46-

49 By adopting the procedure already reported in a recent QSAR work16 176 in silico molecular 

descriptors for cations and anions (128 and 48  respectively) were calculated and here used as the 

X-matrix in a correlation model in which the ENR values are used as the Y-responses by means of 

partial least squares model. 

The Partial Least Squares Projections to Latent Structures” (PLS)50 chemometric tool, available in 

the SIMCA Software package,34 was adopted.   
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