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Abstract

Thein silico VolSurf+ descriptors, accounting for both catioaind anionic structural features of
ionic liquids (ILs). were used to develop a Partiabst Squares (PLS) model able to establish a
Quantitative Structure Property Relationship (QSE#tjelation with their solvatochromic dye Nile
Red polarity. The PLS model allowed prediction @kEalues for 116 ILs providing aim silico

ILs polarity database.
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1. Introduction

lonic liquids (ILs), organic salts formed of an angc cation and an inorganic or organic anion, are
nowadays a very popular class of compounds dubdio versatility in applications which, from
their original use as reaction media, soon expamoedany other$.Their low melting point made
them widely adopted as reaction media originallgsidered as “green” solvents due to their low
volatility, as well as to their high chemical ametmal stability.

As reaction media, they can exert very differeféas. Indeed, ILs can affect reaction mechanisms
inducing different pathways with respect to coni@m! organic solvents or, alternatively, they
can exert a kinetic effect giving products with reg yields in significantly lower reaction times
and/or temperaturés.

Given the huge number of cation/anion combinati@n&rge variety of solvent systems having
different properties can be obtained. This may #emeously represent an advantage and a
detriment. Although a wide range of solvents wdokdin principle available for the same process,
the lack of knowledge of solvent properties and éffort required to perform experimental
investigations makes the selection of a suitableesb for a given process or reaction a hard task.
Hence the need to predict solvent properties byn@aséive Structure Property Relationships
(QSPR) models based an silico structural descriptors. In this context a new opputy is
provided by the VolSurf+ approacfi,which uses information coded into 3D GRID Molecula
Interaction Fields (MIFS)'® to derive physicochemical molecular descriptorshsas molecular
size and shape, hydrophilic and hydrophobic praggerhydrogen bonding, amphiphilic moments,
critical packing parameters and pharmacokineticrig®rs related to solubility, metabolic stability
and cell permeability.

The VolSurf+ procedure has been successfully apppi€QSAR studies to predict a wide variety of
biological properties such as structure—permeatiefationships antitumour activitied"3
phospholipidosis inductidfi*>and more recently the aquatic toxicity of ioniguiids™®

In the ionic liquids field VolSurf+ descriptors ®kinto account several cationic ILs structural
features such as heterocyclic aromatic and non-@foncores, alkyl chain length, presence of
oxygen atoms in the substituents as well as phgs@mical properties of various inorganic and
organic anions.

In this study we wish to verify if VolSurf+ desctgrs, designed foin silico modelling of
biological activities, could be suitable for theegiction of an important ILs property such as
solvent polarity. A recent review, examining seVenaproaches to computational chemistry used

with ILs*” and pointing out the utility of combining compitatal and experimental approaches,
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confirms that the proposed methodology, widely @&edpn medicinal chemistry and industrial
experimental design, has not been previously appfer modelling ILs physico-chemical
properties.

Among solvent properties, polarity is one of thesinwidely used and different empirical scales
known. In general, both neutral and charged prolaes been used, for example the Kosdtand
Reichardt®?° scales adopt pyridinium betaine dyes as polartpgs, while a neutral “sensor” dye
Nile Red (NR) exhibits bathocromic shifts above 1HdQ.

As far as ILs are concerned, interesting experiaiestudies on the determination of ILs dielectric
constants have been carried out by Weingaertnecandrkers?2*

The use of empirical scales to evaluate their figldras been the object of an intense debate.
Indeed, the response of the probe to the solverdetsrmined by all possible solvent-solute
interactions, and in the case of ionic solvents imesbme can play a more significant role than
others. Polarity of ILs has been determined usingls-molecules as spectroscopic probes, taking
advantage of the effects they are able to exedl@ctronic absorption, fluorescence and vibrational
spectra, as well as on paramagnetic resonancdsfgna

In the case of UV-Vis active probes, both charged aeutral “sensors” have been used.
Consequently, the polarity of ILs has been evaltliatsing pyridinium betaine dyes, transition-
metal complexes such as [Cu(acac)(tmemjierocyanine probes and Nile Red (NR). In paricul
NR has been used not only to evaluate the poleafitis by means of the g parameter, but also
to have information about their 3-dimensional oigation as neat solvents or in combination with
other ILs or conventional organic solvents to gbieary mixtures®?’ More than a decade ago,
Seddoret al. reported a pioneering study on NR polarity of ByaB-methylimidazolium 1L$® and
showed that their polarity is comparable with tbathe lower alcohols. This paper points out “a
paucity of good reproducible data” and the needctaate a reliable database”.

Studies relating different ILs structuféand structural variations in both cationic and anionic
moieties to ILs polarif} using the empirical Kamlet-Taft solvent paramekerse been reported.

In this context we here report the polarity of 1& lwith different aromatic and non-aromatic
cationic scaffolds, different alkyl chain lengthdadifferent anions and develop a Quantitative
Structure Property Relationships (QSPR) model based/olSurf+ descriptors with the aim to

predict g values for a large number of commonly used ILs.
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Scheme 1Structure of ILs and of the solvatochromic probedis

2. Results and Discussion

In Table 1 we report both literatdféand experimental § values for 18 ILs (see Scheme 1) with
different cationic and anionic structural featureginly imidazolium cationic scaffolds (plus one
piperidinium and one pyrrolidinium), different lethgalkyl side chains (up to 8 carbon atoms), and
8 anions ranging from tetrafluoroborate to oxygedatnions.

The PLS analysis was carried out using a 18x176rigesr matrix including 18 ILs (Table 1) and
176 variables (128 cation and 48 anion VolSurf+cdpors)® and the R polarity as the response
The analysis provided a 3 PLS components modelTabk 2) explaining 93.2% of y variance?(Q
= 0.770) where the®1and the 2 PLS components explain already 88.1% of y variai@e=
0.728). The plot of predicteds. experimental data (Fig. 1) shows a good agreernetween

experimental and predictedkvalues.



Table 1. Experimental kg values for ILs used as learning and test set &i®IdPedictions.

ENR®
lonic Liquids ENR (Kcal/ PLS DModX® Name
(Kcal/mol) red.
mol)

¢ 1-Benzyl-3-methylimidazolium 1,1,1-trifluoro-N-
1 IMI1-{1Ph) (CF3502)2N 216.2 216.3 1.54 [(trifluoromethyl)sulfonyllmethanesulfonamide

d 1-Ethyl-3-methylimidazolium 1,1,1-trifluoro-N-
2 IM12 (CF3502)2N 217.9 217.8 1.07 [(trifluoromethyl)sulfonyllmethanesulfonamide
3 IM14(10)2P02 218.0° 217.8 | 0.63  1-Butyl-3-methylimidazolium dimethyl phosphate
4 IM14 N(CN)2 215.7° 215.6 | 0.74  1-Butyl-3-methylimidazolium N-cyanocyanamide
5 IM14 PF6 21777 2185 2175 0.79  1-Butyl-3-methylimidazolium hexafluorophosphate

f 1-Butyl-3-methylimidazolium 1,1,1-trifluoro-N-
6 IM14(CF3502)2N 218.2 218.0 2178 0.85 [(trifluoromethyl)sulfonylJmethanesulfonamide
7 [IM14 BF4 217.3¢ 217.2 217.2 0.86 1-Butyl-3-methylimidazolium tetrafluoroborate
8 IM14 CF3CO0 216.6° 216.9| 1.01  1-Butyl-3-Methylimidazolium trifluoroacetate
9 1M14 1CO0 217.2° 217.3 1.57 1-Butyl-3-methylimidazolium acetate

d 1-Butyl-2,3-dimethylimidazolium 1,1,1-trifluoro-N-
10 IM14-2Me (CF3502)2N 217.7 218.0 0.92 [(trifluoromethyl)sulfonyllmethanesulfonamide
11 IM16 N(CN)2 215.3' 215.1| 0.70  1-Hexyl-3-methylimidazolium dicyanamide

d 1-Hexyl-3-methylimidazolium 1,1,1-trifluoro-N-
12 IM16 (CF3502)2N 217.9 2173 0.84 [(trifluoromethyl)sulfonyllmethanesulfonamide
13 IM16 SbF6 216.1° 216.8 1.03  1-Hexyl-3-methylimidazolium hexafluoridoantimonate

d 1-Methyl-3-octylimidazolium 1,1,1-trifluoro-N-
14 1M18 (CF3S02)2N 217.9 217.7 0.61 [(trifluoromethyl)sulfonyl]methanesulfonamide
15 IM18 N(CN)2 215.7° 215.5| 1.07  1-Methyl-3-octylimidazolium dicyanamide

c 1-Benzyl-3-butylimidazolium 1,1,1-trifluoro-N-
16 IM4-(1Ph) (CF3502)2N 216.1 216.4 141 [(trifluoromethyl)sulfonylmethanesulfonamide

. d 1-Butyl-1-methylpiperidinium 1,1,1-trifluoro-N-

17 Pip14 (CF3502)2N 219.0 2195 0.87 [(trifluoromethyl)sulfonyllmethanesulfonamide

d 1-Butyl-1-methylpyrrolidinium 1,1,1-trifluoro-N-
18 Pyr14 (CF3502)2N 219.9 219.6 0.77 [(trifluoromethyl)sulfonyl]methanesulfonamide
19 IM1-10 BF4 219.2 2169 | 1.40  1-Decyl-3-methylimidazolium tetrafluoroborate
20 IM16 PF6 216.8 217.0| 0.87 1-Hexyl-3-methylimidazolium hexafluorophosphate
21 |IM16 BF4 216.8 216.7 | 0.96  1-Hexyl-3-methylimidazolium tetrafluoroborate
22 1IM18 PF6 217.6 217.4 0.86 1-Methyl-3-octylimidazolium hexafluorophosphate
23 |IM18 BF4 217.7 217.1| 1.01  1-Methyl-3-octylimidazolium tetrafluoroborate
N; IM14 NO3 215.3 212.3 | 35.32 1-Butyl-3-methylimidazolium nitrate
N, IM16 NO3 216.3 211.8 | 35.28 1-Hexyl-3-methylimidazolium nitrate
N; IM18 NO3 217.4 212.2 | 35.29 1-Methyl-3-octylimidazolium nitrate

2 Ref. 28;° DModX values indicate the distance of the obséwmatto the X-model hyperplarie Predictions for ILs
with DModX > 1.32 should be considered with canfi®Ref. 31;°Ref. 32:°This work; 'Ref. 33.

Table 2. PLS model parameters for the 3 extracted prin@paiponents (PCs).

Pc| RX  R(cum) R R¥(um) Q@ Q%cum)

0.295 0.295 0.756 0.756  0.603  0.603
2 0.234 0.529 0.126 0.881 0315 0.728
0.128 0.657 0.051 0932 0.153 0.770




SIMCA (Soft Independent Modelling of Class Analotfynodels are soft models applicable within
the experimental space covered by the observaionthe present case ILs) considered in the
analyzed data matrix. Therefore the prediction rdtibility for each single IL depends on its
structural similarity with the structures of thesliconsidered in the model derivation. The PLS
model predictions are reported in Table 1 togethith DModX values, the model residuals in the
X matrix, providing an estimate of the similarity @ new observation (IL) to the training set
observations. Predictions for ILs exhibiting DMod&lues higher than 1.32 should be considered

with some cautiofi! the higher the DModX value, the lower the prediatieliability.
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Figure 1. PLS correlation plot reporting the experimental #me corresponding predicted&
values for ILs 1-18.

In order to check the experimental reliability betmodel predictions, theyk values reported by
Seddor® are also reported as a test set in Table 1. Ibbas note¥ that although the Kamlet—Taft
parameters are well established for traditionalvesais, for ILs they are very sensitive to
impurities®® However, in the present case, the Ealues used as a learning set were determined in
the presence of 1,4-dioxane. As previously repotieel comparison with literature values outline
that the co-solvent presence has a negligible &¥feEhis statement is further supported by the
agreement between theEvalues measured by us with literature éhés three ILs (Table 1)
which indicates a remarkable inter-laboratory repiability.

The PLS model predictions for the test set aregne@ment with the experimental data in Table 1.
Predictions for objects with high DModX values, lsugs ILs with nitrate anions absent in the
learning set, are definitely unreliable. A possibieerpretation of this result might rely on both
anion geometry and size. Anions used in this stxdybit different geometries, as well as different
ionic radii, comparable for [BA and [Pk] anions (232 and 240 pm, respectively) but sigatitly

lower for [NGs] (179 pm) which determines a different chargeritigtion. Anyway, a specific
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effect which renders nitrate modelling more difftcmight be responsible for their peculiar
behaviour.

As far as 1-decyl-3-methylimidazolium tetrafluoroate is concerned, the poor agreement between
experimental and predicted values could be ascribeskgregation effects, which heavily depend
on the alkyl chain lengtf{:*0On the grounds of the above effects, the fluorespaybe could feel
different polar and apolar microenvironments, mawdent for decylimidazolium, than for
octylimidazolium tetrafluoroborate.

The PLS model predictions were extended t@ f#alues for a higher number of ILs (up to 116)
exhibiting DModX values lower than 2.0 in Table S2.

In addition to its prediction potentiality, the PlBodel allows us to evaluate quantitatively the
importance of the VolSurf+ descriptors (Table SERBI) in determining the \g values by means
of their VIP (Variables Importance for the Projeci) values.

Table 3 reports the VIP values for the top 75 dpswrs, together with the coefficients referrirg t
the ' PLS component (the most relevant one) providifigrination on the sign of the descriptor

contribution.

Table 3. VIP values for the top 75 descriptors togethethwhe coefficients of the1PLS
component. VIP values describe the importance oh e&variable both in modeling the objects
and in relation to the Y response. The coefficiemtisies express the sign and the magnitude of the
contribution between the Xs and the Y.

- VIP Coeff.
values  Values
1 D3_Cat 1.80 -0.022
2 CP_Cat 1.80 -0.022
3 D5_Cat 1.78 -0.022
4 VD_Cat 1.78 -0.022
5 D4_Cat 1.78 -0.022
6 D6_Cat 1.77 -0.022
7 CD1_Cat 1.77 -0.022
8 CD2_Cat 1.77 -0.022
9 CD3_Cat 1.74 -0.021
10 | CACO2_Cat 1.73 0.021
11 CD4_Cat 1.71 -0.021
12 D7_Cat 1.70 -0.021
13 D2_Cat 1.69 -0.021
14 CD7_Cat 1.66 -0.021
15 | CD8_Cat 1.64 -0.021
16 | CW2_Cat 1.62 -0.020
17 | CD6_Cat 1.62 -0.020
18 | CD5_Cat 1.61 -0.020
19 PSA_Cat 1.60 -0.019



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

D8_Cat
D1_Cat
D8_An
CD8_An
CD6_An
CD7_An
W2_Cat
D6_An
D7_An
CD5_An
CW1_Cat
CD4_An
D5_An
W3_Cat
D4_An
CW3_An
S_An
V_An
G_An
CW3_Cat
W1_Cat
CW2_An
IW4_An
CW5_An
ID4_Cat
W5_An
R_An
DD1_Cat
FLEX_Cat
W1_An
SOLY_Cat
LgS3_Cat
LgS4_Cat
LgS5_Cat
LgS6_Cat
LgS7_Cat
LgS7,5_Cat
LgS8_Cat
LgS9_Cat
LgS10_Cat
LgS11_Cat
LOLgS_Cat
LgBB_Cat
G_Cat
DRDRDR_Cat
DD2_Cat
FLEX_RB_Cat

1.60
1.58
1.58
1.58
1.55
1.55
1.54
1.53
1.52
151
1.48
1.47
1.45
1.39
1.35
1.35
1.35
1.34
1.33
1.32
1.32
1.32
1.32
1.30
1.29
1.26
1.25
1.24
1.24
1.21
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.19
1.18
1.16
1.15
1.11

-0.020
-0.019
-0.019
-0.019
-0.018
-0.018
-0.019
-0.018
-0.018
-0.018
-0.018
-0.017
-0.017
-0.018
-0.016
-0.016
0.016
0.016
0.015
-0.016
-0.015
-0.015
-0.015
-0.015
-0.014
-0.015
0.014
-0.012
-0.013
0.014
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.012
-0.013
-0.013
-0.011
-0.013



67 | CWA4_An 1.11 -0.013
68 | DD3_Cat 1.10 -0.009
69 A_An 1.10 0.013
70 S_Cat 1.10 -0.011
71| HSA_Cat 1.09 -0.011
72| MWw_cat 1.09 -0.012
73| CW1_An 1.06 -0.012
74 V_Cat 1.05 -0.010
75| DIFF_Cat 1.01 0.009

VIP values give an indication (in absolute valueg)what variables in the X block (VolSurf+
descriptors) are relevant to determine the depeénderable (polarity of ILs). Table 3 shows that
the major influence on the response is provideddiyon descriptors, especially by those related to
their hydrophobic character (hydrophobic volumgsdndd hydrophobic capacity factors ¢Bt
different energy levels). A lower contribution isvgn by cationic descriptors referring to a general
hydrophilic character (hydrophilic volumes indicagi polarizability W1-W4 and hydrophilic
capacity factors CW1-CW3) and water solubilitytiiimsic solubility SOLY and solubility at
various pH LgSs). The latter descriptors show aitp@ contribution to the §r values (as
expressed by the relative coefficients), whereaddahmer are inversely correlated to the responses,
indicating that molecular polarizability (expressegl W1-W3) in ILs contribute to decrease the
response, whereas ILs able to be dissolved in viiatee higher kg values. Similar considerations
can be done for the corresponding anionic hydropghobaracter (D4-D8 and CD4-CD8) and
hydrophilic (W1,W5 and CW1-CWS5) character descriptdn particular, a positive contribution is
found for anionic size descriptors (molecular glaity G, molecular volume V, molecular surface
S and volume/surface ratio R), in agreement with tonsiderations made to rationalize the
peculiarity of [NQ']-based ionic liquids.

In Fig. 2 we report the PC1 vs. PC2 scores plqilaysng in the same chemical space the 18 ILs
and Er (the y response). In the upper right quadrantwith a non-aromatic heterocyclic scaffold
are located very close tayEshowing that they positively influence the resgo@®. exhibit higher
Enr values). Moreover the shorter the side cham more water soluble ILs located in the lower
right part of the plot) the higher theyEvalues. When considering different ILs with thensa
cation (IM14) the anions size plays a relevant reledenced by the second component, in
agreement with the positive contribution of theomic size descriptors: the higher the PC2 score,
the higher the g value.



#1M18 (CF3502)2N

Pip14 (CF3502)2Ne

05 ¢ IM4-(1Ph) (CF3502)2N
Pyr14 (CF3502)2Né
©1M16 (CF3502)2N O EXR
¢1M18 N(CN)2
~ #IM16 SbF6
Q ¢ IM14 (CF3SO2)2N® ¢ IM14-2Me (CF3502)2N
IM1-(1Ph) (CF3S02)2Ne ¢1M14 (10)2P02
¢ IM14 PF6e
IM16 N(CN)2
IM14 BF4e
¢1M14 1CO0
IM14 CF3C00¢
i IM12 (CF3502)2Ne
& 1M14 N(CN)2
-1
1 0,5 0 0,5 -
PC1

Figure 2. PC1 vs. PC2 scores plot reporting the ILs 1-Ietioer with y-response: this plot can
show similarities and dissimilarities among theeals (ILs) and allows to interpret how they are
related to the responseEvariable) along the®land the ¥ PLS components.

The above considerations show that the present Q8§BRoach, considering simultaneous
variations in both the cation (heterocyclic corel ade chain length) and the anion structural
features by means of 176 ILs descriptors is ablpréwide an estimate of their importance and a
tentative interpretation of their physico-chemiaagnificance in relation to the polarity of ILs.i$
perhaps worth mentioning here that attempted adrogls with Kosower and Reichardt empirical
solvent parameters were not satisfactory probabey/td the ionic structure of the solvatochromic
dyes which in solution with ILs implies the preseraf two cations and two anions, a condition
quite difficult to be modelled. A neutral “sensalich as Nile Red simplifies the above picture

renderingn silico modelling possible.
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3. Conclusions

VolSurf+ descriptors, accounting for both catioard anionic structural features of ILs were used
to develop a PLS model able to establish a QSPRelation with their solvatochromic dye Nile
Red polarity. The PLS model allowing predictionEfz values provided am silico ILs polarity
database for over 100 ILs. The above databasedimgustructurally different ILs with similar
polarity provides the possibility to select an oml IL according not only to its polarity but alsm
other properties such as synthetic affordabilityyimnmental sustainability in its life cycle and
economic considerations. The same approach, usadjly available descriptors and an accessible
statistical procedure such as PLS, could be extetaldevelop QSPR models for other relevant ILs

physico-chemical properties.

4. Experimental

4.1  Synthesis and characterization of ILs

[IM14][(10)2P02], was purchased and used withouwt atter purification. [IM14][CF3COQ] and
[IM14][1COOQO] were obtained by anion exchange onrresarting from corresponding halide as
following reported. All ionic liquids were dried amvacuum line at 60 °C for at least 2 h before
use, then stored in a dryer under argon and oVeiucachloride. In all cases, the silver nitratstte

performed to verify the presence of residual hatiden, gave a negative result.

4.1.1 General procedure for anion exchange on resiThe Amberlite resin IRA-400 (16 g) was
converted from chloride form to hydroxide form Huteng an aqueous solution dlaOH (10 mL,
10% w/v) within a column. Subsequently the resirs waashed with water until the eluate was
neutral. The halide salt (10 mmol), dissolved inthmaol/water (70/30, v/v), was eluted, and the
eluate collected into a flask containing a solutminthe corresponding acid in stoichiometric
amount, until neutralization. The resulting solatiwas concentrateoh vacuo, then treated with
activated charcoal in ethanol. Filtration and realoof the solvent afforded the ionic liquids as
viscous oils in high to quantitative yields.

1-Butyl-3-methylimidazolium trifluor oacetate ([IM14][CF3COOQ]).

Pale yellow oil. Yield: 94%.

vmax (Nujol) 3150, 3095, 2970, 2880, 1700¢tm

'H NMR (300 MHz, @-DMSO): $=9.34 (s, 1 H), 7.91 (d]=24 Hz, 2 H), 4.33 (J=8 Hz, 2 H),
4.01 (s, 3H), 1.93 (quing=7.6 Hz, 2 H), 1.40 (quint]=7.6 Hz, 2 H), 1.07 (t)=7.6 Hz, 3 H) ppm.
13C NMR (300 MHz, @ DMSO): 6= 158.0, 139.4, 125.3, 122.1, 50.4, 37.1, 30.92,3P2.4, 17.6
ppm.
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1-Butyl-3-methylimidazolium acetate. ([IM14][1COQ]).

Pale yellow oil. Yield: 99%.

vmax (Nujol) 3150, 3095, 2970, 2880, 1700¢tm

'H NMR (300 MHz, ¢-DMSO0): 6=9.73 (s, 1 H), 7.88 (dI=21 Hz, 2 H), 4.24 (t}= 7.6 Hz, 2 H),
3.92 (s, 3 H), 1.82 (quind=7.5 Hz, 2 H), 1.64 (s, 3 H), 1.29 (quidt7 Hz, 2 H), 0.95 (t)=7 Hz, 3
H) ppm.**C NMR (300 MHz, ¢-DMSO) &= 172.9, 137.4, 123.7, 122.4, 59.2, 48.5, 35.79,25.
18.9, 13.4 ppm.

4.2 BEuvr Measurements

The determination of polarity parametegxrEwas carried out by mixing into a quartz cuvette
(optical path 0.2 cm), 500L of IL and 75uL of a concentrated solution of spectroscopic priobe
1,4-dioxane. The concentration of the probe wasleu2.0 - 1¢ M. The obtained solution was
thermostated at 298 K.

4.3  Computational Methods

In VolSurf+, the GRID force field was chosen to characterize potent@ampand hydrophobic
interaction sites around target molecules by theew@H?2), the hydrophobic (DRY), the carbonyl
oxygen (O) and amide nitrogen (N1) probes. Thermédion contained in the resulting MIFs is
transformed into a quantitative scale by calcutptine volume or the surface of the interaction
contours. In particular, the VolSurf+ procedure sists of the generation of the 3D molecular fields
from the interactions of the OH2, DRY, O and N1 h@e around a target molecule, next the
calculation of descriptors from the 3D maps obtdime the first step. The definition of all 128
VolSurf+ descriptors is given in case studids>3%*°and with the previous versions of VolIS{ft.

9 By adopting the procedure already reported incame QSAR work 176in silico molecular
descriptors for cations and anions (128 and 4%eds/ely) were calculated and here used as the
X-matrix in a correlation model in which the/dvalues are used as the Y-responses by means of
partial least squares model.

The Partial Least Squares Projections to LatentcStres” (PLSY® chemometric tool, available in
the SIMCA Software packagéwas adopted.
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