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Synthesis of Azaylide-Based Amphiphiles by Staudinger Reaction 
Masahiro Yamashina,[a]* Hayate Suzuki,[a] Natsuki Kishida,[b] Michito Yoshizawa,[b] and Shinji Toyota[a]* 
 

Abstract: Catalyst- and regent-free reactions are powerful tools 
creating various functional molecules and materials. However, such 
chemical bonds are usually hydrolysable or require specific 
functional groups, which limits their use in aqueous media. Here we 
report that the development of new amphiphiles through the 
Staudinger reaction. Simple mixing of chlorinated aryl azide with a 
hydrophilic moiety and various triarylphosphines (PAr3) gave rise to 
azaylide-based amphiphiles NPAr3, rapidly and quantitatively. The 
obtained NPAr3 formed ca. 2 nm-sized spherical aggregates 
(NPAr3)n in water. The hydrolysis of NPAr3 was significantly 
suppressed as compared with those of non-chlorinated amphiphiles 
nNPAr3. Computational study revealed the stability is mainly 
governed by the LUMO modulation around phosphorus atom due to 
the o-substituted halogen groups. Furthermore, hydrophobic dyes 
such as Nile red and BODIPY were encapsulated by the spherical 
aggregates (NPAr3)n in water. 

     An amphiphilic molecule, which can self-aggregate and 
encapsulate guest molecules in water, has been greatly 
attracted in the various fields.[1,2] Such amphiphiles have well-
segregated hydrophobic and hydrophilic parts in the molecule. 
The synthesis of amphiphiles is usually conducted in two steps: 
(i) construction of hydrophobic parts, (ii) introduction of 
hydrophilic chains[3–5] (Figure 1a). Inspired by the green 
chemistry,[6] we envisioned that in situ preparation by simple 
mixing of the hydrophilic/hydrophobic part and hydrophobic part 
with optimum hydrophilic-lipophilic balance would be a powerful 
strategy for development of various supramolecular materials[7–

11]. Actually, amphiphiles produced by this concept has been 
studied by using noncovalent interactions such as host-guest 
system[12,13] and coordination bonding[14,15] (Figure 1b). In the 
case of covalent bonding, dynamic covalent bonds[16] and 
copper-free click reaction[17] are well studied as catalyst- and 
reagent-free reactions. However, despite the micellization is only 
performed in water, these covalent bonds are very fragile toward 
water or require specific functional groups. Therefore, in situ 
method for the development of facile, versatile, and reliable 
synthetic methodology for aqueous materials is still challenging 
task, so far. 
     The Staudinger reaction is a click-type reaction of an azide 
with a phosphine to form an iminophosphorane, so-called 
azaylide, which is first reported by Staudinger and Meyer in 
1919 (Figure 1c).[18] This reaction rapidly undergoes in high yield 

under mild conditions. However, the formed azaylide is readily 
hydrolyzed to primary amine and phosphine oxide once existing 
water. Taking advantage of this hydrolysis, the Staudinger 
reaction has been usually employed in the biochemical field,[19–

22] as initiated by Bertozzi and co-workers[23]. Recently, Yan,[24] 
Xi,[25] Yoshida, and Hosoya[26] found the “non-hydrolysis” 
Staudinger reaction for a biolabeling, in which halogen atoms on 
the aryl azide significantly improve the hydrolytic stability of 
azaylide.[27,28] This unusual stability prompted us to utilize the 
azaylide formation for various supramolecular materials in water. 
The advantage of this method is: (i) a variety of trisubstituted 
phosphine compounds are commercially available[29] and 
reported,[30] and (ii) their triaryl moieties can be utilized for 
hydrophobic parts directly. Here we for the first time present the 
development of azaylide-based amphiphiles through the 
Staudinger reaction, as it is simple mixing of the hydrophilic 
subcomponent and various hydrophobic triarylphosphines 
(PAr3), and their self-assembly behaviors in water (Figure 1d). 

 
Figure 1. Schematic representations of (a) typical synthetic methodology of 
amphiphiles, (b) amphiphiles prepared by noncovalent bonding and 
coordination bonding, (c) the Staudinger reaction, and (d) azaylide-based 
amphiphiles prepared through the Staudinger reaction. 

     We first prepared the hydrophilic subcomponent 1 based on 
the previous literatures (Figures S1-S10).[26,31] Subcomponent 1 
(0.060 mmol) was then mixed with 0.060 mmol of tris(p-
tolyl)phosphine (PTol3) in CH3CN (5.0 mL) at 60 ºC for 3 min to 
form NPTol3 in over 99% yield (Figure 2a, Figures. S19-S24). 
The azaylide-based molecules can be switched by combination 
of hydrophilic and hydrophobic parts. Indeed, mixing of 1 with 
triphenylphosphine (PPh3) and tris(p-anisyl)phosphine (PAni3) 
gave rise to corresponding azaylides (NPAr3) such as NPPh3 
and NPAni3, respectively (Figures S25-S32). Non-chlorinated 
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nNPAr3 was also synthesized from non-chlorinated 2 and PAr3 
(Figure 2a, Figures S11-18, S33-44). Colorless single crystals of 
NPPh3I, in which the counter anion was replaced with I–, were 
obtained by slow diffusion of Et2O into a solution of NPPh3I in 
CH3CN. In the crystalline state, two phenyl groups were 
disordered due to their rotation, and one phenyl group was 
placed perpendicular to be trans-stilbene-like structure (Figures 
2b, S45). NPPh3I and phenyl azaylide[32] indicated similar 
dihedral angles in the CA-P-N-CB as 160o and 177o, respectively 
(Figure S46). As a result of the similar corn angle with 
triphenylphosphine, trident NPAr3 would be suitable to form 
finite aggregates (Figure S46). The optimized structure of 
NPAr3’ with a methyl ester group instead of the hydrophilic 
chain was also supported the chemical structure of azaylide 
(Figures 2c and S47). 

 

Figure 2. (a) Formation of azaylide through phosphazide in acetonitrile. (b) 
The ORTEP drawing of NPPh3I which is an analogue of NPPh3. Counter 
anions are omitted for clarity. (c) The optimized structure of NPTol3’ at the 
B3LYP/6-31G (d,p) level with the conductor-like polarizable continuum model 
(CPCM; H2O) (red ball: phosphorus, blue ball: nitrogen, green and light blue: 
carbon, yellow: chlorine, pink: oxygen) 

     The supramolecular behavior of azaylide-based amphiphiles 
was investigated in water. When NPTol3 (4.0 mmol) was 
dissolved into water (1.0 mL), azaylide-based aggregate 
(NPTol3)n was formed spontaneously (Figure. 3a). In the 1H 
NMR spectrum of NPTol3 (4.0 mM in D2O), a set of signals for 
tolyl moiety was considerably broadened and shifted upfield (Dd 
= ~0.6 ppm) (Figure 3b, Figure S48). The 31P NMR signal 
significantly defused in stark contrast to a sharp and strong 
signal in CD3CN (Figure S49). These characteristic spectrum 
changes arise from existing of dynamic behavior. The diffusion-
ordered spectroscopy (DOSY) NMR spectrum showed a single 
band with D = 9.79 × 10–11 m2 s–1 (Figure 3b, Figures S51-52). 
Dynamic light scattering (DLS) measurement provided relatively 
small aggregates ~2 nm with a narrow distribution (Figure 3c, 
Figure S60), which is comparable to a diameter of spherical 
aggregates (NPTol3)10 (Figure 3d, Figures S61-62). 

      

 
Figure 3. (a) Schematic representations of the self-assembly of (NPTol3)n in 
water. (b) 1H NMR and DOSY spectra (500 MHz, 298 K, D2O, 4.0 mM based 
on NPTol3) of (NPTol3)n. (c) DLS chart of (NPTol3)n (298 K, H2O, 4.0 mM 
based on NPTol3). (d) Molecular modeling of the azaylide-based aggregate 
(NPTol3)10. 

     The aggregation is further supported by nuclear Overhauser 
effect spectroscopy (NOESY), where correlations are obviously 
obtained between the terminal methyl and the interior phenyl 
protons (HC–HA) (Figure S50). In addition, the concentration-
dependent 1H NMR spectra clearly showed the gradual upfield 
shifting of HC and HB (Dd = up to 0.61 ppm), as the concertation 
increased from 0.40 to 8.0 mM (Figures S64,65, Table S3). 
Interestingly, in the range of 0.020 to 0.20 mM, all of the proton 
signals became sharp without shifting because of the 
monodispersity of NPTol3 (Figures S64,65). Thus, the critical 
micelle concentration (CMC) of NPTol3 is estimated to be ~0.40 
mM, which is relatively low as compared with those of classical 
amphiphile (e.g., sodium dodecyl sulfonate (SDS) for 8.0 mM[33]). 
In the same manner as NPTol3, the formation of (NPPh3)n and 
(NPAni3)n was confirmed (Figures S53-62). It is noteworthy that 
the CMC of NPPh3 shows ~2.0 mM which is 5-fold higher than 
those of NPTol3 and NPAni3. (Figures S66-69, Tables S4,5). 
This outcome implies that the presence of aromatic-alkyl CH-p 
interaction leads to enforce the strong aggregation. In addition, 
the in situ preparation of (NPAr3)n was successfully 
demonstrated by mixing of 1 and corresponding PAr3 in pure 
water even in heterogeneous system (Figure S63). Two chlorine 
atoms probably contribute increasing the hydrophobicity since 
the broad 1H NMR signal was not observed in non-chlorinated 
nNPAr3 (Figures S73-75). (n)NPAr3 displayed absorption 
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bands around 320 nm and indicated a weak blue emission in 
water or acetonitrile (Figures S70-72, Table S6). 
     Encouraged by the finding of those supramolecular 
aggregations, we next investigated the stability of the azaylide-
based amphiphile toward water. An azaylide moiety is generally 
sensitive to water and organic solvents such as CS2.[24] Indeed, 
the non-chlorinated nNPTol3 was rapidly hydrolyzed in water at 
293 K affording the corresponding primary amine and phosphine 
oxide after a few hours (Figure 4a bottom and 4b, Figure S73). 
The half-life of nNPTol3 in water at 293 K was calculated to be 
~12 h by monitoring the 1H NMR signals (Figures S73,79, Table 
S7). In contrast, the chlorinated NPTol3 came out to be 
consistently tolerated under the same conditions (Figure. 4a top 
and 4c, Figure S76). NPPh3 and NPAni3 were more stable than 
the corresponding non-chlorinated derivatives nNPPh3 and 
nNPAni3, respectively (Figures. S74,75,77-79, Table S7). This 
unique stability was also observed under the monodispersity 
state (Figures S80,81). These results clearly revealed that two 
chlorine atoms remarkably enhanced the tolerance of azaylide 
for hydrolysis. The water content ratio in the solvent is strongly 
related to the rate of hydrolysis, where the reaction accelerated 
as the water ratio increased in the solvent. To the best of our 
knowledge, this is first example in which azaylides successfully 
demonstrated the tolerance test in pure water.[24,26] 

 

Figure 4. (a) Reaction scheme of the hydrolysis of NPTol3 and nNPTol3 in 
water. 1H NMR spectra (500 MHz, 298 K, D2O) before and after 60 h of (b) 4.0 
mM of nNPTol3 and (c) 4.0 mM of NPTol3. (d) Time-course of the 
decomposition of NPTol3 and nNPTol3 in water for 60 h. (e) Visualization and 
(f) fragment composition of the LUMOs for nNPTol3’ and NPTol3’. 

     To obtain further insight into the unusual hydrolytic stability of 
the azaylide, we carried out density functional theory (DFT) 
calculation in water for chlorinated NPTol3’ and non-chlorinated 
nNPTol3’ without the hydrophilic chain as model compounds. 
The calculated HOMO of NPTol3’ shows low energy level in 
comparison with nNPTol3’ (Figure S82). This fact indicated that 
two chlorine atoms stabilized the HOMO leading to a decrease 
of basicity of nitrogen atom. Visualization of the molecular 
orbitals (MOs) is given in Figure S82. The LUMOs of aryl ester 
(Hyd) and triarylphosphine (Aryl) moieties between NPTol3’ and 
nNPTol3’ show precisely different distribution; the fragment 
composition of Hyd to Aryl was 66% : 24% for NPTol3’ and 
25% : 64% for nNPTol3’, estimated by MO analysis (Figure 4f, 
Figures S82-83).34 As a result of these differences, the LUMO 
around phosphorus atom in NPTol3’ was remarkably reduced 
by 40% compared to nNPTol3’ (Figure S84). Likewise, other 
azaylides NPPh3’ and NPAni3’ show similar tendencies in 
comparison with those of non-chlorinated ones (Figures S82-84). 
Thus, the LUMO modulation around phosphorus atom arose 
electron withdrawing chlorine atoms stabilized the azaylide 
moiety because nucleophilic addition of water on phosphorus 
atom has become a rate-determined step (Scheme S1).[35,36] 
Steric protection effect may be related in this system as well. 
 
     Finally, we carried out experiments for the guest 
encapsulation within the azaylide-based aggregates in water. 
Whereas polyaromatic amphiphiles capable of uptaking 
hydrophobic molecules have been reported,[37] amphiphiles 
containing a triarylphosphine core are rarely reported so far.[38, 39] 
Thus, the host capability of triarylphosphine core is obscure. 
When Nile red (NR, excess) as hydrophobic organic dye was 
mixed with 8.0 mM aqueous solution of NPTol3 (0.5 mL) 
overnight at room temperature, the solution color changed from 
colorless to a bright pink (Figure 5a). After removal the excess 
NR by filtration, the formation of the host-guest complex was 
confirmed by NMR, UV-vis, fluorescence, and DLS 
measurements. As a result of NMR analysis, ~0.1 mM of NR 
was found in 4.0 mM of NPTol3 aqueous solution (Figure S85). 
The UV-vis spectrum shows a broad absorption band around 
493 and 562 nm, which indicates that hydrophobic NR is 
dissolved in water through encapsulation (Figure 5b). In the 
fluorescence spectrum, intense fluorescence of NR significantly 
decreased (FF = 0.1%) because of the tight guest-guest 
aggregation (Figure 5b). DLS measurement revealed relatively 
large aggregates with narrow size distribution which is 
approximately 4.5 nm as a diameter (Figure S88). This size of 
nanoparticle most probably corresponds to NR15•(NPTol3)40 as 
estimated by molecular mechanics calculation (Figure 5c). The 
increased the size of encapsulated micelle was the 
consequence of strong guest-guest aggregation.[40] Similarly, 
(NPTol3)n successfully encapsulated pyrromethene 546 (BP) in 
water. The characteristic absorption band around 455 and 501 
nm arose encapsulated (BP)n and significant low fluorescence 
quantum yield (~0.1%) were confirmed as well as NR (Figure 
S87). The encapsulated particle was displayed approximately 
6.6 nm with a broad distribution (Figures S88,90), which is larger 
than the encapsulated NR.[40] In the same manner, we 
succeeded in encapsulation of NR and BP by using NPPh3 and 
NPAni3, respectively (Figures S86,87,89). Interestingly, NPPh3 
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has low uptake ability toward both NR and BP, although NPAni3 
has strong affinity for NR as well as NPTol3 observed by UV-vis 
absorption bands. Thus, this result also indicates that CH-p 
interactions between host and guest molecules play an 
important role in forming a robust host-guest complex in water. 

 

Figure 5. (a) Schematic representation of the encapsulation of Nile red (NR) 
by NPTol3 in water. (b) UV-vis and fluorescence spectra of NRn•(NPTol3)m 
(H2O, 298 K, 2.0 mM based on NPTol3). (c) Molecular modeling of the 
azaylide-based aggregate NR15•(NPTol3)40. 

     In conclusion, we have developed facile synthesis 
methodology for amphiphiles through the Staudinger reaction. 
Simple mixing of the hydrophilic subcomponent and hydrophobic 
triarylphosphines gave rise to corresponding azaylide-based 
amphiphiles rapidly and quantitatively. The amphiphiles form 
spherical aggregates which are ~2.0 nm as a diameter in water 
through p-p and CH-p interactions. Hydrolysable azaylide moiety 
is significantly stabilized in water because of the LUMO 
modulation around phosphorus atom arose electron withdrawing 
chlorine atoms. Furthermore, the obtained amphiphiles provide 
host capability toward hydrophobic organic dye in water. The 
present azaylide formation serves as a new type of preparation 
technique without catalysts and reagents, which will enable to 
create further functional materials in aqueous media. 
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Here we report new type of amphiphiles through the click-type Staudinger reaction, 
which is in situ preparation by mixing of hydrophilic azide and hydrophobic 
triarylphosphine. These azaylide-based amphiphiles are stable against hydrolysis 
even in water and form ~2 nm spherical aggregates through self-assembly. 
Furthermore, the obtained amphiphiles by our method are capable of encapsulation 
of hydrophobic organic dyes in water. 
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