

Tetrahedron Letters 44 (2003) 7741-7745

TETRAHEDRON LETTERS

Formal total synthesis of altohyrtin C (spongistatin 2). Part 1: Aldol approach to unite AB and CD spiroacetals

Takeshi Terauchi, Taro Terauchi, Ippei Sato, Wataru Shoji, Tomoharu Tsukada, Takashi Tsunoda, Naoki Kanoh[†] and Masaya Nakata^{*}

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Received 5 August 2003; revised 19 August 2003; accepted 21 August 2003

Abstract—The Mukaiyama aldol coupling of the second-generation C1–C14 (AB) fragment of altohyrtins (spongistatins) with the model α -methyl- β -alkoxyaldehydes revealed that the stereochemistry at the newly formed carbon centers was controlled by the β -alkoxy chiral center of the model aldehydes. The union of the AB fragment with the C15–C28 (CD) fragment under the same conditions gave the fully elaborated C1–C28 (ABCD) subunit in good yield. © 2003 Elsevier Ltd. All rights reserved.

The altohyrtins, spongistatins, and cinachyrolide A (1-4) were isolated from marine sponges by the Kitagawa, Pettit, and Fusetani groups, respectively (Fig. 1).¹ The structural complex family of macrolides displays extremely potent antitumor activities against several tumor cell lines. Since their isolation in 1993, many synthetic groups have focused on the total synthesis in this area.^{2–18} The relative and absolute stereochemistries of the family, which were established on the basis of extensive spectroscopic analyses of natural samples, were confirmed via the total syntheses of altohyrtin C (spongistatin 2) (3) by Evans² and altohyrtin A (spongistatin 1) (1) by Kishi.³ After their elegant total syntheses, Smith,⁴ Paterson,⁵ and Crimmins⁶ have also achieved the total synthesis of the altohyrtin family.

As part of our program directed toward the total synthesis of the altohyrtins,¹⁹ we previously reported the synthesis of the C1–C14 (AB)^{19a} and the C15–C28 (CD) spiroacetals^{19b} as well as the C29–C44 (EF) bistetrahydropyran.^{19c} We envisioned that the three consecutive stereochemistries on C14-C16 in the ABCD

fragment 5, having the unnatural C23 configuration,²⁰ should be constructed by an aldol coupling of the AB silyl enol ether 6 and the CD aldehyde 7 (Fig. 2). As it is difficult to predict the influence of the C17 configuration in 7 on the stereoselectivity of the aldol reaction, we first examined the coupling of 6 with the model aldehydes 8 and 9.

Altohyrtin A (Spongistatin 1) (1): X=CI, R¹=R²=Ac Altohyrtin B (2): X=Br, R¹=R²=Ac Altohyrtin C (Spongistatin 2) (3): X=H, R¹=R²=Ac Cinachyrolide A (Spongistatin 4) (4): X=CI, R¹=Ac, R²=H

Figure 1.

0040-4039/\$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.08.082

Keywords: altohyrtins; spongistatins; stereoselective synthesis; aldol reaction.

^{*} Corresponding author. Tel.: +81-45-566-1577; fax: +81-45-566-1551; e-mail: msynktxa@applc.keio.ac.jp

[†] Present address: Antibiotics Laboratory, Discovery Research Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Our second-generation AB fragment 6 was prepared as shown in Scheme 1. The synthesis commenced with the coupling of dithiane 10^{19a} with epoxide 11^{19a} to afford alcohol 12 in 85% yield. A series of deprotections and protections was efficiently accomplished to give β -hydroxyketone 13 in 71% yield. Removal of TBS and Bn groups followed by an acidic treatment (PPTS, CH₂Cl₂) afforded spiroacetal 14 in 57% yield. Selective *p*-methoxybenzyl (MPM) ether formation followed by protection of the resultant diol as triethylsilyl (TES) ethers, DIBALH reduction, and Dess-Martin oxidation²¹ afforded aldehyde 15 in 40% overall yield. Ethylation at C13 and subsequent oxidation gave ethyl ketone 16 in 87% yield. Finally, after conversion of the C5-TES ether in 16 to the C5-acetate (73% yield), enol silvlation of the C13 ketone (TMSOTf, 2,6-lutidine) furnished the silvl enol ether 6 in good regio- (>99:1) and stereoselectivities (>96%).

With the required compound **6** in hand, we then focused on the Mukaiyama aldol reaction²² by using the model aldehydes 8^{23} and 9^{23} Treatment of **6** and **8** with BF₃·OEt₂ in CH₂Cl₂ at -78°C generated the coupling product **17** in 60% yield as a single product

(Scheme 2). To elucidate the C14 and C15 stereochemistries of 17, the C13 ketone was first reduced by DIBALH²⁴ in a stereoselective manner to afford triol, which was then treated with 2,2-dimethoxypropane and PPTS in CH₂Cl₂ to give acetonide 18. Rychnovsky analysis²⁵ of the acetonide portion revealed that the 1,3-dioxane existed in a well-defined chair conformation, suggesting that the relative stereochemistry of the C13, C15-diol is 1,3-*syn*. Furthermore, NOE studies revealed that the methyl group at C14 is *syn* to the C13 and C15 hydroxy groups.

To determine the C15 absolute configuration of 17, the C15 hydroxy group was converted to its MTPA ester 19 (Scheme 3). As the result of the Kakisawa-Kusumi test²⁶ was unclear, the C17 MPM group was cleaved by oxidative removal using DDQ to prepare hemiacetal 20. Extensive ¹H NMR analysis showed that the coupling constant between H_{15} and H_{16} was 4.8 Hz, determining the absolute stereochemistry at C15 to be shown in Schemes 2 and 3. Therefore, the stereochemistry of 17 was confirmed as C14,C15-*syn* and C15,C16-*anti*, which is in accord with that of the natural products.

The Mukaiyama aldol reaction using aldehyde **9** was also examined (Scheme 4). The reaction proceeded under the same conditions but in lower yield (31%) to give β -hydroxyketone **21**. By using the same analysis described above, the stereochemistry of **21** was determined to be C14,C15-*syn* and C15,C16-*syn*. These results suggested that the stereoselectivity of the aldol reaction was controlled by the C17 chiral center as anticipated.^{7b,22b}

Based on these results, we next focused on the coupling of the intact fragments (Scheme 5). Our previously synthesized diol 22^{19b} was transformed to the C15-C28 (CD) aldehyde 23 in 44% overall yield. The coupling reaction between 6 and 23 proceeded smoothly without any epimerization at C23 to produce the C1–C28 (ABCD) fragment 24²⁷ in 69% yield as a single adduct. When the C23-epimer of 23, having the correct stereochemistry at C23, was used for the aldol coupling reaction, partial epimerization at C23 was observed.²⁸ The next objective is to introduce the C13 exomethylene. Unfortunately, all attempts to provide 25 (e.g. Tebbe methylenation, Wittig reaction, Julia olefination, Peterson olefination, Takai olefination using 24 (R = H, Ac, TMS, MEM)) failed.29

In summary, we have demonstrated that the stereochemical outcome on C14 and C15 was completely controlled by the β -alkoxy chiral center of the aldehydes. Although the planned exomethylenation to form the crucial C13 olefin did not proceed, we describe in the following communication³⁰ our next generation strategy to construct the C14–C15 linkage and a formal total synthesis of altohyrtin C.

Scheme 1. Synthesis of the AB fragment 6. *Reagents and conditions*: (a) 10, *n*-BuLi, HMPA, THF, -20° C, then 11 (85%); (b) DIBALH, CH₂Cl₂-hexane, rt; (c) PivCl, Et₃N, CH₂Cl₂, rt; (d) Hg(ClO₄)₂, CaCO₃, THF–H₂O, 0°C (71% for three steps); (e) aq. HF, MeCN, 40°C (89%); (f) H₂, Pd–C, EtOAc, rt; (g) PPTS, CH₂Cl₂, rt (64% for two steps); (h) MPMOC(=NH)CCl₃, PPTS, CH₂Cl₂, rt (54%); (i) TESOTf, 2,6-lutidine, CH₂Cl₂, 0°C (93%); (j) DIBALH, CH₂Cl₂-hexane, -78° C (86%); (k) Dess–Martin periodinane, pyridine, CH₂Cl₂, rt (92%); (l) EtMgBr, ether, 0°C; (m) Dess–Martin periodinane, pyridine, CH₂Cl₂ (87% for two steps); (n) PPTS, CH₂Cl₂-MeOH, 0°C; (o) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt (73% for two steps); (p) TMSOTf, 2,6-lutidine, CH₂Cl₂, 0°C (89%). Piv=2,2-dimethylpropionyl.

Scheme 2. Mukaiyama aldol reaction of 6 with 8. *Reagents and conditions*: (a) $BF_3 \cdot OEt_2$, CH_2Cl_2 , $-78^{\circ}C$ (60%); (b) DIBALH, THF, $-78^{\circ}C$ (86%); (c) $Me_2C(OMe)_2$, PPTS, CH_2Cl_2 , rt (82%).

Scheme 3. Determination of the C14-16 stereochemistry of 17. *Reagents and conditions*: (a) (*S*)-(+)-MTPACl or (*R*)-(-)-MTPACl, Et₃N, DMAP, CH₂Cl₂, rt (80%); (b) DDQ, CH₂Cl₂-H₂O, rt (75%). MTPA=2-methoxy-2-phenyl-2-(tri-fluoromethyl)acetyl.

Scheme 5. Preparation of the C1-C28 (ABCD) fragment 24. *Reagents and conditions*: (a) TBDPSCl, imidazole, DMF, rt (75%); (b) TBSCl, imidazole, DMF, 50°C (85%); (c) DIBALH, CH₂Cl₂-hexane, 0°C (72%); (d) IBX, DMSO-THF, rt (96%); (e) BF₃·OEt₂, CH₂Cl₂, -78°C (69%). IBX = *o*-iodoxybenzoic acid.

References

- (a) Kobayashi, M.; Aoki, S.; Sakai, H.; Kawazoe, K.; Kihara, N.; Sasaki, T.; Kitagawa, I. *Tetrahedron Lett.* 1993, 34, 2795–2798; (b) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.; Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302–1304; (c) Fusetani, N.; Shinoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993, 115, 3977–3981.
- (a) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2738–2741; (b) Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 2741–2744; (c) Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J.; Dias, L. C.; Tyler, A. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 2744–2747; (d) Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Côté, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N. Tetrahedron 1999, 55, 8671–8726.
- (a) Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 187–192; (b) Hayward, M. M.; Roth, R. M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 192–196.
- (a) Smith, A. B., III; Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar, M. D.; Boldi, A. M.; Moser, W. H.; Murase, N.; Nakayama, K.; Sobukawa, M. Angew. Chem., Int. Ed. 2001, 40, 191–195; (b) Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196–199; (c) Smith, A. B., III; Zhu, W.; Shirakami, S.; Sfouggatakis, C.; Doughty, V. A.; Bennett, C. S.; Sakamoto, Y. Org. Lett. 2003, 5, 761–764 and references cited therein.
- Paterson, I.; Chen, D. Y.-K.; Coster, M. J.; Acena, J. L.; Bach, J.; Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace, D. J.; Hodgson, A. P.; Norcross, R. D. Angew. Chem., Int. Ed. 2001, 40, 4055–4060 and references cited therein.
- Crimmins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. J. Am. Chem. Soc. 2002, 124, 5661–5663 and references cited therein.
- (a) Cho, I. H.; Paquette, L. A. *Heterocycles* 2002, 58, 43–46 and references cited therein; (b) Zuev, D.; Paquette, L. A. Org. Lett. 2000, 2, 679–682.
- Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4, 3719– 3722 and references cited therein.
- Wallace, G. A.; Scott, R. W.; Heathcock, C. H. J. Org. Chem. 2000, 65, 4145–4152 and references cited therein.
- Lemaire-Audoire, S.; Vogel, P. J. Org. Chem. 2000, 65, 3346–3356 and references cited therein.
- Samadi, M.; Munoz-Letelier, C.; Poigny, S.; Guyot, M. *Tetrahedron Lett.* 2000, 41, 3349–3353.
- 12. Uckun, F. M.; Mao, C.; Vassilev, A. O.; Huang, H.; Jan, S.-T. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 541–545.
- 13. Anderson, J. C.; MaDermott, B. P.; Griffin, E. J. Tetrahedron 2000, 56, 8747-8767 and references cited therein.
- Barrett, A. G. M.; Braddock, D. C.; de Koning, P. D.; White, A. J. P.; Williams, D. J. J. Org. Chem. 2000, 65, 375–380.
- 15. Dunkel, R.; Treu, J.; Hoffmann, H. M. R. *Tetrahedron: Asymmetry* **1999**, *10*, 1539–1549.

- Kary, P. D.; Roberts, S. M.; Watson, D. J. *Tetrahedron:* Asymmetry 1999, 10, 213–216 and references cited therein.
- Fernandez-Megia, E.; Gourlaouen, N.; Ley, S. V.; Rowlands, G. J. Synlett 1998, 991–994.
- Zemribo, R.; Mead, K. T. *Tetrahedron Lett.* 1998, 39, 3891–3894 and references cited therein.
- (a) Terauchi, T.; Nakata, M. *Tetrahedron Lett.* **1998**, *39*, 3795–3798;
 (b) Terauchi, T.; Terauchi, T.; Sato, I.; Tsukada, T.; Kanoh, N.; Nakata, M. *Tetrahedron Lett.* **2000**, *41*, 2649–2653;
 (c) Terauchi, T.; Morita, M.; Kimijima, K.; Nakamura, Y.; Hayashi, G.; Tanaka, T.; Kanoh, N.; Nakata, M. *Tetrahedron Lett.* **2001**, *42*, 5505–5508.
- 20. The C23 stereocenter is reported to be epimerized to the natural congener in the final stage of the synthesis. See Ref. 4b.
- (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156; (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287.
- 22. (a) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503–7509; (b) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322–4343.
- The model aldehydes 8 and 9 were prepared from methyl (S)-3-hydroxy-2-methylpropionate as follows: (a) TrCl, Et₃N, DMAP, CH₂Cl₂, rt; (b) DIBALH, CH₂Cl₂-hexane, -78°C; (c) EtMgBr, ether, rt; (d) CSA, MeOH, rt, separation of two diastereomers, which were identical with authentic samples by comparison of their optical rotations and ¹H NMR spectra, see: Fujisawa, T.; Tajima, K.; Sato, T. *Chem. Lett.* 1984, 1669–1672; Kayano, A.; Akazome, M.; Fujita, M.; Ogura, K. *Tetrahedron* 1997, 53, 12101–12114; (e) *p*-MeOPhCH(OMe)₂, CSA, CH₂Cl₂, rt; (f) DIBALH, CH₂Cl₂-hexane, -40°C; (g) Dess-Martin oxidation.
- 24. Kiyooka, S.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 27, 3009–3012.
- (a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett.
 1990, 31, 945–948; (b) Rychnovsky, S. D.; Rogers, B. N.; Yang, G. J. Org. Chem. 1993, 58, 3511–3515; (c) Rychnovsky, S. D.; Yang, G.; Powers, J. P. J. Org. Chem.
 1993, 58, 5251–5255; (d) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9–17.
- Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.
- 27. Since it was difficult to determine the stereochemistry at the newly formed carbon centers (C14, C15), it was tentatively assigned as depicted, depending on the model studies as described above. Moreover, the fact that the coupling constants (J=8.8, 2.4 Hz) around the C15 stereocenter of acetate **24** (R = Ac) were close to those (J=9.2, 2.8 Hz) of the Paquette's compound supports the assignment. See Ref. 7b.
- 28. Other groups also experienced a similar epimerization in their synthetic studies. See Refs. 3a and 4a.
- 29. Paquette et al. reported that they succeeded in the methylenation of the C13 ketone with Tebbe reagent albeit in low yield. See Ref. 7b.
- Terauchi, T.; Tanaka, T.; Terauchi, T.; Morita, M.; Kimijima, K.; Sato, I.; Shoji, W.; Nakamura, Y.; Tsukada, T.; Tsunoda, T.; Hayashi, G.; Kanoh, N.; Nakata, M. *Tetrahedron Lett.* 2003, 44, 7747–7751.