Highly Regioselective Double Hydrothiolation of Terminal Acetylenes with Thiols Catalyzed by Palladium Diacetate

Takenori Mitamura, Masayuki Daitou, Akihiro Nomoto, and Akiya Ogawa*

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531

Received November 8, 2010 E-mail: ogawa@chem.osakafu-u.ac.jp

Treatment of terminal acetylenes 1 with two equivalents of thiols 2 in the presence of $Pd(OAc)_2$ catalyst and H_2O causes regioselective double hydrothiolation of 1, leading to the corresponding dithioketals 3 in moderate to good yields.

Organosulfur compounds are a useful class of compounds in pharmaceutical science, materials science, and organic synthesis, because of their bioactivity, material functionalities, and synthetic utilities as reaction intermediates.¹ Although transition-metal-catalyzed addition reactions of organosulfur compounds, e.g., thiols, to C-C unsaturated bonds are expected to be efficient methods for the synthesis of organosulfur compounds including the formation of new C-S bonds, the development of these methods is thought to be challenging due to poisoning of transition-metal catalysts by sulfur.² We have recently revealed the palladium-catalyzed addition of organic disulfides or thiols to acetylenes³ or allenes,⁴ leading to the corresponding vinyl sulfides selectively. Very recently, we and other groups have also subsequently achieved several addition reactions of organosulfur compounds to unsaturated bonds mediated by transition-metal catalysts.^{5,6} During the course of our research extending the transition-metal-catalyzed addition reactions of thiols to unsaturated bonds, we have found that thiols add duplicately to acetylenes. Herein, we wish to report a Pd(OAc)2catalyzed regioselective double hydrothiolation of terminal acetylenes with thiols to give the corresponding dithioketals in the presence of H_2O or AcOH (eq 1).⁷

$$R^{1} + R^{2}SH \xrightarrow{\text{cat. Pd}(OAc)_{2}} H_{2}O \text{ or } AcOH \xrightarrow{R^{2}S SR^{2}} R^{1} (1)$$

We examined the $Pd(OAc)_2$ -catalyzed reaction of 1-octyne (1a) with 2 equivalents of benzenethiol (2a) in THF at 40 °C in the presence of H₂O (Table 1). 1-Octyne (1a) underwent the double hydrothiolation with 2a to afford dithioketal 3a selectively (Entries 1 and 2). In addition, the use of AcOH in place of H₂O was effective for this double hydrothiolation

Table 1. The Reaction of 1-Octyne (1a) with Benzenethiol $(2a)^{a}$

(CH ₂);	cat. Po SCH ₃	d(OAc) ₂ 2a), H ₂ O F	PhS_SPh	SPh		
1a	sol 40 °C	vent 2, 20 h	(CH ₂); 3a	₂) ₅ CH ₃ ' (CH ₂) ₅ CH ₃ 4a		
Entry	Solvent	Yield of $3a/\%^{b)}$		Yield of 4a/% ^{b)}		
1	THF		80		ND	
2 ^{c)}	THF	72		ND		
3 ^{d)}	THF	71		3		
4 ^{e)}	THF	ND		69		
5 ^{f)}	THF	73		3		
6	Acetone	83		ND		
7	EtOH	84		ND		
8	CH ₃ CN		66	ND		
9	CHCl ₃		66	ND		
10	Benzene	_	17	28		

a) Reaction conditions: 1-octyne (1a, 0.5 mmol), benzenethiol (2a, 1.0 mmol), Pd(OAc)₂ (5 mol% based on 1a), solvent (0.5 mL), H₂O (ca. 1 equiv based on 1a), 40 °C, 20 h. b) Determined by ¹H NMR. c) The reaction was carried out for 16 h. d) AcOH (1 equiv based on 1a) was used in place of H₂O. e) The reaction was carried out for 40 h in the absence of H₂O.

(Entry 3). When we examined the Pd(OAc)₂-catalyzed reaction of 1a with 2a in the absence of H_2O , the Pd(OAc)₂-catalyzed reaction provided only vinyl sulfide 4a as a single hydrothiolation product (Entry 4). However, when the Pd(OAc)2catalyzed reaction of 1a with 2a in the absence of H_2O was conducted for 40 h, dithioketal 3a was obtained in 73% yield (Entry 5). Thus, these results suggest that the addition of H₂O or AcOH promotes the double hydrothiolation of terminal acetylenes. The Pd(OAc)2-catalyzed double hydrothiolation of 1a was also examined in several solvents. In the cases of acetone and ethanol, the corresponding dithioketal 3a was obtained in 83% and 84% yields, respectively (Entries 6 and 7). In acetonitrile or chloroform, 3a was also produced in moderate vields (Entries 8 and 9). In contrast, when benzene was used as a nonpolar solvent, a mixture of vinyl sulfide 4a and dithioketal **3a** was formed with lower conversion (Entry 10).

We next examined the Pd(OAc)2-catalyzed reaction of several terminal acetylenes 1 with thiols 2 (Table 2). 1-Hexyne (1b) and 5-methyl-1-hexyne (1c) provided the corresponding dithioketals **3b** and **3c** in good to high yields (Entries 2 and 3). Hydroxy, carboxy, and chloro substituents were tolerated under these double hydrothiolation conditions, affording 3d, 3e, and 3f in moderate to good yields, respectively (Entries 4-6). In the cases of 5-hexynenitrile (1g) and methyl propargyl ether (1h), moderate yields of 3g and 3h were obtained (Entries 7 and 8). Unfortunately, propargyl chloride (1i) or bromide (1j) were not suitable substrates for this double hydrothiolation, and instead, the oligomerization of 1i or 1j took place (Entries 9 and 10). In the case of phenylacetylene (1k), the reaction led to 3k successfully when the reaction mixture was treated in two steps (Entry 11).⁸ We also attempted using several arenethiols. 4-Fluorobenzenethiol (2b) and 4-chlorobenzenethiol (2c) produced dithioketals 31 and 3m in 70% and 55% isolated yields, respectively (Entries 12 and 13). In contrast, the reactions with

 Table 2. Double Hydrothiolation of Terminal Acetylenes 1

 with Thiols 2^{a)}

R^1		5201		c	cat. Pd(OAc) ₂		R ² S _{SR²}	
		+	RESH				∕ [−] R ¹	
1			2				3	
Entry	1	\mathbb{R}^1		2	R ²	3	Yield/% ^{b)}	
1	1a	CH ₃ (C	CH ₂) ₅ -	2a	Ph–	3a	72 (67)	
2	1b	CH ₃ (C	CH ₂) ₃ -	2a	Ph–	3b	67 (57)	
3	1c	$(CH_3)_2$	$_2$ CH(CH ₂) ₂ -	2a	Ph–	3c	82 (73)	
4	1d	HO(Cl	$H_2)_2-$	2a	Ph–	3d	60 (43)	
5	1e	HO ₂ C	$(CH_2)_3-$	2a	Ph–	3e	69 (33)	
6	1f	Cl(CH	2)3-	2a	Ph–	3f	54 (45)	
7	1g	NC(CI	H ₂) ₃ -	2a	Ph–	3g	36 (21)	
8	1h	CH ₃ O	CH_2-	2a	Ph–	3h	36 (28)	
9	1i	CICH ₂		2a	Ph–	3i	5	
10	1j	BrCH ₂	2—	2a	Ph–	3j	ND	
11 ^{c)}	1k	Ph–		2a	Ph–	3k	53 (52)	
12	1a	CH ₃ (C	CH ₂) ₅ -	2b	$4-F-C_{6}H_{4}-$	31	93 (70)	
13	1a	CH ₃ (C	CH ₂) ₅ -	2c	$4-Cl-C_6H_4-$	3m	70 (55)	
14 ^{d)}	1a	CH ₃ (C	CH ₂) ₅ -	2d	$4-CH_3-C_6H_4-$	3n	20 (8)	
15 ^{d)}	1a	CH ₃ (C	CH ₂) ₅ -	2e	$2-CH_3-C_6H_4-$	30	23 ()	
16 ^{e)}	1a	CH ₃ (C	CH ₂) ₅ -	2f	$C_6H_{11}-$	3p	25 (25)	
17	1a	CH ₃ (C	CH ₂) ₅ -	2g	CH ₃ (CH ₂) ₁₁ -	3q	ND	

a) Reaction conditions: acetylene (1, 0.5 mmol), thiol (2, 1.0 mmol), Pd(OAc)₂ (5 mol % based on 1), THF (0.5 mL), H₂O (ca. 1 equiv based on 1), 40 °C, 16 h. b) Yields were determined by ¹H NMR. Values in parentheses are isolated yields. c) This reaction was conducted by the following two steps: (1) phenylacetylene (1k, 0.25 mmol), benzenethiol (2a, 0.25 mmol), Pd(OAc)₂ (5 mol %), acetone (0.25 mL), 40 °C, 16 h; (2) benzenethiol (2a, 0.25 mmol), AcOH (0.25 mmol), 40 °C, 16 h. The yield shown in Entry 11 was calculated after the two steps reaction. d) The corresponding vinyl sulfide 4 was obtained mainly. e) Most of the starting material 1a was recovered unchanged.

4-toluenethiol (2d), 2-toluenethiol (2e), and cyclohexanethiol (2f) afforded low yields of 3n, 3o, and 3p (Entries 14–16), and dodecanethiol (2g) did not give 3q (Entry 17).

To elucidate the reaction pathway for the palladium diacetate-catalyzed double hydrothiolation of terminal acetylenes with thiols, we focused on vinyl sulfides as a plausible intermediate. When vinyl sulfide **4a** was treated with **2a** and H_2O in the presence of $Pd(OAc)_2$ as a catalyst, hydrothiolation of **4a** proceeded to afford the dithioketal **3a** in 80% yield (Scheme 1). AcOH was also efficient for the hydrothiolation of **4a**, providing an excellent yield of **3a**. In addition, the reaction of **4a** in the absence of additives also provided **3a** in 80% yield. On the other hand, no reaction took place by use of AcOH in the absence of $Pd(OAc)_2$. These results strongly suggest that the double hydrothiolation proceeds via the formation of vinyl sulfides and is catalyzed by palladium species in both first addition of thiols to terminal acetylenes and second addition to vinyl sulfides.

A plausible reaction pathway for the reaction is proposed in Scheme 2. Ligand exchange of acetate groups of Pd(OAc)₂ with R²S groups generated Pd(SR²)₂L_n and AcOH (Scheme 2). The coordination of alkyne to the palladium sulfide complex and *syn*-thiopalladation of alkyne formed β -*cis*-thio-substituted

Scheme 1. Reactions of vinyl sulfide 4a.

Generation of Palladium Sulfide Species

Pd(OAc)₂ $\xrightarrow{R^2SH (2)}$ Pd(SR²)₂L_n

Palladium-Catalyzed Double Hydrothiolation

Scheme 2. A plausible reaction pathway.

vinylpalladium species. Protonolysis of vinylpalladium species with thiols produced the vinyl sulfide **4** with regeneration of the palladium sulfide complex. Further thiopalladation and protonolysis with thiols afforded dithioketals **3**. H_2O or AcOH may contribute to accelerating the addition of thiols to unsaturated bonds by protonolysis or coordinate to the catalyst to prevent the clustering of palladium complex with sulfur species.

We also examined the reaction using PhSD or D₂O to gain mechanistic insights (Scheme 3).⁹ When **1a** was treated with PhSD (68%D) in the presence of H₂O, the reaction formed **3a**, d_1 -**3a**, and d_2 -**3a** in 35%, 21%, and 15% yields. In addition, the reaction of **4a** with PhSH in the presence of D₂O was also carried out, which afforded **3a** and d_1 -**3a** in 35% and 36% yields. These observations suggest that H₂O (or AcOH) promotes protonation in the generation of dithioketals.

In summary, we have developed the palladium diacetatecatalyzed double hydrothiolation of terminal acetylenes with thiols in the presence of H_2O or AcOH, leading to the corresponding dithioketals selectively. We also revealed that this palladium-catalyzed double hydrothiolation took place via the formation of vinyl sulfides and the additives, i.e., H_2O or AcOH, promoted the addition of thiols to unsaturated bonds.

Experimental

General Procedure for the Palladium Diacetate-Catalyzed Double Hydrothiolation of Terminal Acetylenes. To a solution of 1-octyne (1a, 0.5 mmol) and palladium diacetate (5 mol%) in THF (0.5 mL) were added benzenethiol (2a, 1.0 mmol) and H₂O (ca. 1 equiv based on 1a), and the mixture

Scheme 3. The reaction using PhSD or D_2O .

was stirred at 40 °C for 16 h. After the reaction, the mixture was filtered through a Celite pad (eluent: AcOEt) and the filtrate was concentrated under reduced pressure. The crude mixture was purified by PTLC (Hex:AcOEt = 99:1) to give 2,2-bis(phenylsulfanyl)octane (**3a**, 0.335 mmol, 67%) as slightly yellow oil.

2,2-Bis(phenylsulfanyl)octane (3a): ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, J = 6.6 Hz, 3H), 1.15–1.34 (m, 6H), 1.37 (s, 3H), 1.55–1.74 (m, 4H), 7.27–7.39 (m, 6H), 7.58–7.68 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 22.5, 24.7, 28.1, 29.2, 31.7, 41.5, 64.2, 128.4, 128.9, 132.1, 136.8; MS (EI) *m/z* 330 (M⁺, 100).

This work is supported by Grant-in-Aid for Scientific Research on Scientific Research (B, No. 19350095), from the Ministry of Education, Culture, Sports, Science and Technology, Japan. T. M. also thanks the Japan Society for the Promotion of Science (JSPS) for the Research Fellowship for Young Scientists.

Supporting Information

Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for dithioketals. This material is available free of charge on the web at http://www.csj.jp/journals/bcsj/.

References

1 a) T. Wirth, Angew. Chem., Int. Ed. 2000, 39, 3740. b) G. Mugesh, W.-W. du Mont, H. Sies, Chem. Rev. 2001, 101, 2125. c) C. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev. 2004, 104, 6255. d) G. Zeni, D. S. Lüdtke, R. B. Panatieri, A. L. Braga, Chem. Rev. 2006, 106, 1032. e) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534. f) G. Perin, E. J. Lenardão, R. G. Jacob, R. B. Panatieri, Chem. Rev. 2009, 109, 1277. g) Organosulfur Chemistry I in Topics in Current Chemistry, ed. by P. C. B. Page, Springer, Berlin, 1999, Vol. 204. doi:10.1007/3-540-48956-8 h) Organosulfur Chemistry II in Topics in Current Chemistry, ed. by P. C. B. Page, Springer, Berlin, 1999, Vol. 205. doi:10.1007/3-540-48986-X

a) A. Ogawa, J. Organomet. Chem. 2000, 611, 463. b) T. Kondo,
T. Mitsudo, Chem. Rev. 2000, 100, 3205. c) F. Alonso, I. P. Beletskaya,
M. Yus, Chem. Rev. 2004, 104, 3079. d) I. Beletskaya, C. Moberg,
Chem. Rev. 2006, 106, 2320. e) H. Kuniyasu, N. Kambe, Chem. Lett.

2006, 35, 1320.

3 a) H. Kuniyasu, A. Ogawa, S. Miyazaki, I. Ryu, N. Kambe, N. Sonoda, *J. Am. Chem. Soc.* 1991, *113*, 9796. b) H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe, N. Sonoda, *J. Am. Chem. Soc.* 1992, *114*, 5902. c) A. Ogawa, T. Ikeda, K. Kimura, T. Hirao, *J. Am. Chem. Soc.* 1999, *121*, 5108.

4 a) A. Ogawa, J. Kawakami, N. Sonoda, T. Hirao, *J. Org. Chem.* **1996**, *61*, 4161. b) S. Kodama, E. Nishinaka, A. Nomoto, M. Sonoda, A. Ogawa, *Tetrahedron Lett.* **2007**, *48*, 6312.

5 For recent advances in bisthiolation, see: a) T. Kondo, S. Uenoyama, K. Fujita, T. Mitsudo, J. Am. Chem. Soc. 1999, 121, 482. b) M. Arisawa, M. Yamaguchi, Org. Lett. 2001, 3, 763. c) V. P. Ananikov, M. A. Kabeshov, I. P. Beletskava, G. G. Aleksandrov, I. L. Eremenko, J. Organomet. Chem. 2003, 687, 451. d) V. P. Ananikov, I. P. Beletskaya, G. G. Aleksandrov, I. L. Eremenko, Organometallics 2003, 22, 1414, e) S. Usugi, H. Yorimitsu, H. Shinokubo, K. Oshima, Org. Lett. 2004, 6, 601. f) V. P. Ananikov, I. P. Beletskaya, Org. Biomol. Chem. 2004, 2, 284. g) V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, Synlett 2005, 1015. h) V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, Organometallics 2005, 24, 1275. i) M. Arisawa, K. Fujimoto, S. Morinaka, M. Yamaguchi, J. Am. Chem. Soc. 2005, 127, 12226. j) I. P. Beletskaya, V. P. Ananikov, Pure Appl. Chem. 2007, 79, 1041. k) I. P. Beletskaya, V. P. Ananikov, Eur. J. Org. Chem. 2007, 3431.1) M. Cai, Y. Wang, W. Hao, Green Chem. 2007, 9, 1180. m) V. P. Ananikov, K. A. Gayduk, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, Chem.-Eur. J. 2008, 14, 2420. n) V. P. Ananikov, N. V. Orlov, M. A. Kabeshov, I. P. Beletskaya, Z. A. Starikova, Organometallics 2008, 27, 4056. o) H. Kuniyasu, K. Takekawa, F. Yamashita, K. Miyafuji, S. Asano, Y. Takai, A. Ohtaka, A. Tanaka, K. Sugoh, H. Kurosawa, N. Kambe, Organometallics 2008, 27, 4788. p) M. Wang, L. Cheng, B. Hong, Z. Wu, Organometallics 2009, 28, 1506. q) N. Taniguchi, Tetrahedron 2009, 65, 2782. r) Y. Nishiyama, H. Ohnishi, Y. Koguma, Bull. Chem. Soc. Jpn. 2009, 82, 1170. s) A. Nomoto, G. Shiino, A. Ogawa, Res. Chem. Intermed. 2009, 35, 965. t) V. P. Ananikov, K. A. Gayduk, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, Eur. J. Inorg. Chem. 2009, 1149. u) V. P. Ananikov, K. A. Gayduk, N. V. Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, Chem.-Eur. J. 2010, 16, 2063.

6 For recent advances in hydrothiolation, see: a) W.-J. Xiao, H. Alper, J. Org. Chem. 2001, 66, 6229. b) I. Kamiya, E. Nishinaka, A. Ogawa, J. Org. Chem. 2005, 70, 696. c) V. P. Ananikov, D. A. Malyshev, I. P. Beletskaya, G. G. Aleksandrov, I. L. Eremenko, Adv. Synth. Catal. 2005, 347, 1993, d) C. Cao, L. R. Fraser, J. A. Love, J. Am. Chem. Soc. 2005, 127, 17614. e) V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, Organometallics 2006, 25, 1970. f) D. A. Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V. P. Ananikov, I. P. Beletskaya, S. P. Nolan, Organometallics 2006, 25, 4462. g) V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, T. V. Timofeeva, J. Am. Chem. Soc. 2007, 129, 7252. h) A. Kondoh, H. Yorimitsu, K. Oshima, Org. Lett. 2007, 9, 1383. i) L. R. Fraser, J. Bird, Q. Wu, C. Cao, B. O. Patrick, J. A. Love, Organometallics 2007, 26, 5602. j) S. Shoai, P. Bichler, B. Kang, H. Buckley, J. A. Love, Organometallics 2007, 26, 5778. k) S. Kodama, A. Nomoto, M. Kajitani, E. Nishinaka, M. Sonoda, A. Ogawa, J. Sulfur Chem. 2009, 30, 309. 1) J. Yang, A. Sabarre, L. R. Fraser, B. O. Patrick, J. A. Love, J. Org. Chem. 2009, 74, 182. m) A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl. Catal., A 2010, 375, 49.

7 For the InBr₃-catalyzed addition of thiols to acetylenes, leading to dithioketals, see: J. S. Yadav, B. V. Subba Reddy, A. Raju, K. Ravindar, G. Baishya, *Chem. Lett.* **2007**, *36*, 1474.

8 When the reaction of phenylacetylene (0.1 mmol) with benzenethiol (0.2 mmol) in the presence of Pd(OAc)₂ (5 mol %) and H₂O (ca. 0.1 mmol) in THF was conducted, a complex mixture of 1,1-bis(phenylsulfanyl)ethylbenzene, 2-phenylsulfanylstyrene, and 1-phenylsulfanylstyrene was obtained.

9 For the monohydrothiolation using deuterated thiol, see Ref. 3b.