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Abstract The first enantioselective synthesis of the optically pure (R)- and (S) - 5,5"-dihydroxy- 
4',4'",7,7"-tetramethoxy -8,8"-bitlavone is described. The key steps involve the intramolecular 
oxidative coupling of the cyanocuprat¢ intermediate and FriedeI-Cmfls rearrangement. Their absolute 
configuration was reconfirmed by CD spectra. © 1997, Elsevier Science Ltd. All rights reserved. 

In 1968, Ilyas and his coworkers ~ isolated (-)-5,5"-dihydroxy-4',4'",7,7"-tetramethoxy -8,8"-biflavone 

(1) from Araucar ia  cunninghami i  and A. cook/ as the first optically pure biflavone. Since then, 13 other 

optically active biflavones of three groups, i.e., cupressflavones, amentoflavones, and agathisflavones, have 

been isolated from a variety of plants. There is now ample evidence of the pharmacological effects of biflavones 

including inhibition of cyclic AMP phosphodiesterase 2~ and inhibition of lens aldose reducyase 2b, etc. In most 

cases, the biflavones proved to be more active than the monomeric species. 

OH O 

M e O ~  OMe 

M e O ~ ~ ~  -OMe 

OH O 

1 
The chirality of those biflavones is due to the atropisomerism of the biflavone moiety. Although the 

racemic 5,5"-dihydroxy-4',4'",7,7"-tetramethoxy -8,8"-biflavone or its derivatives have been synthesized by 

various methods 3, and the absolute configuration of the naturally occurring 5,5"-dibydroxy-4',4"',7,7"- 

tetramethoxy -8,8"-biflavone was deduced as aR by Harada et al. a and later on confirmed by us 3g, to our 

knowledge, there was no report of enantioselective synthesis of the optically active (R)- or (S)-I. As a 
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continuation of our efforts in this area, we report here the first enantioselective synthesis of the optically pure 

(R)- and (S)-I, in which the asymmetric intramolecular oxidative coupling of the cyanocuprate intermediate of 

6 developed by Lipshutz's group 5 and the Friedel-Crafis rearrangement of 13 were employed as the key steps. 

We have also reconfirmed their absolute configuration by CD spectra. 
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Reagents and conditions: a. TBDMSCI, imidazole, DMF, r.t, 24 h, 84%; b. 2-iodo-3,5-dimethoxyphenol, DEAD, n-Bu3P, 
THF, r.t, 24 h, 68%; c. n-Bu4NF, TI-IF, 2 h, 90%; d. 2-iodo-3,5-dimethoxyphenol, DEAD, n-Bu3P, TI-IF, r.t, 42 h, 42%; e. n-BuLi, 
TI-IF, -78°C, 1 h; CuCN-TMEDA(I:3), -78°C-~ -40°C, 1 h; dry 02, -78°C, 4 h, 75%; f. 10% Pd/C, H2, EtOAc, 12 h, 100%; g. 
TsCI, py., 0 °C, 8 h, 92%; h. NaI, acetone, reflux, 3 h, 85%; i. activated Zn powder, EtOH, reflux, I h, 80%; j. (S)-ct-methoxy-ct- 
(trifluoromethyl)-phenylacetyl chloride, 4-DMAP, Et3N, CH2CI2, r.t, 24 h, 90%. 

As shown in scheme 1, 1,4-di-O-benzyl-D-threitol (2) 6 was converted to its monosilyl ether (3). 

Mitsunobu reaction ~ of 3 with 2-iodo-3,5-dimethoxyphenol s, with the configuration transformation from S to 

R at the reaction center, gave 4 in 68% yield. Cleavage of the silyl ether of 4 with n-Bu4NF in TI-IF gave 5 in 

90% yield, which was followed by treatment with 2-iodo-3,5-dimethoxyphenol again to give the (2R,3R)- 

tetraether (6) 9 in 42% yield. The low yield of the second Mitsunobu reaction was possibly caused by the steric 

hindrance at the coupling center. The attempt of the condensation of two molecules of 2-iodo-3,5- 

dimethoxyphenol to 2 in one step failed. Treatment of 6 with n-BuLi followed by addition of CuCN-TMEDA 

(1:3) led to formation in situ of a higher order cyanocuprate intermediate 5, which transformed to 7 ]0 upon 

exposure to dry oxygen at -78°C in 75% yield. In order to obtain the biphenol (11) from 7, a four-step process 

was designed to cleave the chiral auxiliary. Catalytic hydrogenation of 7 gave the threitol (8) in quantitative 
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yield The threitol (8) was converted to the ditosylate (9) in 92% yield, which upon treatment with NaI gave the 

diiodide (10) in 85% yield. Reduction of 10 by activated zinc powder in ethanol provided the biphenol (11) in 

80%. The diastereomeric excess of 11 was determined to be 81% by the examination of the ZH NMR spectra of 

its corresponding (S)-Mosher's ester (12). The optically pure 11 11 was obtained by recrystallization from ethyl 

acetate and hexane. 

Subsequently, our efforts were made to complete the synthesis of the optically pure I (Scheme 2). 

Scheme 2 
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Reagents and conditions: a. (CH3CO)20, py, 2 h, 93%; b. TiCI4, benzene, reflux, 1 h, 94%; c. p-anisaldehyde, KOH, cat. 
TEBACI, EtOH-H20(3:2), r.t, 48 h, 80%; d. 12, DMSO, 150°C, 30 rain., 60%; e. BCI3, CH2CI2, 0°C, 1 h, 84%. 

The diacetate (13), generated from 11 by treatment with acetic anhydride in pyridine, underwent Friedel- 

Crafts rearrangement promoted by TiCI4 as Lewis acid to afford 1412 in 94% yield. Treatment of 14 with p- 

anisaldehyde in presence of KOH and catalytic TEBACI as a phase-transfer reagent gave bichalcone (15) in 

80% yield. Ring closure of 15 on heating with I2 -DMSO 38 afforded 16 in 60% yield. Selective demethylation 

of 16 with BCI33d in CH2CI2 at 0°C gave (+)-113 in 84% yield. The absolute configuration of the synthetic (+)- 

1[[~]22D +76.6 (c 0.11, EtOH)] was assigned as aR and was determined to be optically pure by comparison of 

the specific rotation value of (R)-I [[~]ISD +77 (C 0.2, EtOH) for (R)-I] with our previous report 38. The CD 

curves of the synthetic (+)-1 were in accordance with that of the naturally occurring 1, which was deduced as 

aR by Harada et al. 4. This result was also in agreement with Lipshutz's conclusion ~ that the (2R,3R)-tetraether 

generally induced the formation of (R)-biaryl and the (2S,3S)-tetraether generally induced the formation of (S)- 

biaryl in the cyclization (6--,7). Accordingly, the absolute configuration of the biaryis 7, 8, 9, 10, !1, 12, 13, 14, 
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15, 16 was all assigned as aR. In the same manner  as that  o f  preparat ion o f  (R)-I ,  the optically pure (S)-I 

[[~]22D -77.3 (c 0.13, E tOH)]  13 was synthesized using 1,4-di-O-benzyI-L-threitol 6 as the chiral auxiliary and the 

CD curves o f  the  synthetic (3')-1 was contrary to that o f  the naturally occurring 1. 

In summary,  we have accomplished the first enantioselective synthesis o f  the optically pure  (R)- and 

(S) -5 ,5"-d ihydroxy-4 ' ,4 ' " ,7 ,7" - te t ramethoxy -8,8"-bif lavone (1) and reconfirmed the absolute  configurat ion o f  

the naturally occurr ing 1 as aR by CD spectra. 
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