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1. Introduction

Amidonaphthoquinones are found in a number of natural 
products and biologically relevant molecular targets.1 However, 
their synthesis from the corresponding aminonaphthoquinones 
has generally been problematic. That the nitrogen atom is part of 
a vinylogous amide is undoubtedly responsible for this lack of 
reactivity.1 As a consequence, amidonaphthoquinones are 
commonly generated from the corresponding protected 
aminohydroquinones followed by deprotection and oxidation 
(Scheme 1). As an example of such a strategy, DeBrabander and 
co-workers recently synthesized the amidonaphthoquinone of 
salinisporamycin by generating the amide from the 
hydronaphthoquinone and subsequently oxidizing the 
hydroquinone.2 They turned to this indirect strategy only after 
struggling to couple the aminonapthoquinone with the requisite 
carboxylic acid. While they do not explicitly state their 
examination of the necessary aminonaphthoquinone, Lang and 
Groth applied a similarly circuitous synthesis of the 
amidonaphthoquinone marcanine A.3 Finally, during our recent 
study of naphthoquinone acrylamide photoelectrocyclization 
reactions we suffered through low yielding amide formation from 
the coupling of 2-aminonaphthoquinone with acids or acid 
chlorides and were forced to adopt the more roundabout 
DeBrabander route to provide the desired substrates (Scheme 1).4

Scheme 1 Synthesis of amidoquinone through aminohydroquinone.4

2. Results and discussion

In an effort to improve upon this multistep protocol, we 
considered whether a one-pot aminonaphthoquinone reduction, 
amide formation, and aerobic oxidation sequence might be more 
successful and were encouraged that Corey and Clark had 
previously communicated a related approach during their 
generation of the rifamycin ansa-lactam. As outlined in Scheme 
2, they reduced the rifamycin aminonaphthoquinone using 
Pd/CaCO3 and H2, filtered the catalyst away from the resulting 
hydroquinone, and then converted it into the desired rifamycin 
ansa-lactam by heating the reaction mixture to 50 °C. Oxidation 
of the hydroquinone using potassium ferricyanide enabled them 
to convert it to naphthoquinone 5.5 In light of the importance of 
amidonaphthoquinones, it was surprising to us that in the years 
subsequent to the Corey work that the in situ reduction protocol 
has not been examined in any significant detail.

Scheme 2. Corey and Clark’s Reductive Macrocyclization to the Rifamycin 
Ansalactam.5

To get a sense of whether the one-pot process could be used to 
generate the amidonaphthoquinones of interest to us, we initially 
examined whether a modified Corey/Clark protocol could be 
applied to 2-aminonaphthoquinone 7 to give acrylamide 10 
(Scheme 3). We synthesized aminoquinone 7, the starting 
compound for the one-pot protocol, in 83% overall yield from 
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Described here is a one-pot method of synthesizing amidonaphthoquinones from the 
corresponding aminonaphthoquinones. The scope of amides that can be synthesized using this 
methodology is relatively broad and the yield of product is higher than the traditional methods of 
synthesizing these substrates.
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1,4-naphthoquinone using Fieser’s conditions.6 From 7, we 

found that the in situ reduction, coupling, oxidation sequence 
worked well. Our optimized conditions involved the sequential 
hydrogenation of the quinone using 10% Pd/C and H2 (1 atm), a 
N2 purge to replace the remaining H2, the rapid addition of 
crotonyl chloride and NaHCO3, filtration to remove the Pd/C and 
NaHCO3, and exposure of the reaction mixture to the 
atmosphere.14 This sequence gave amidonaphthoquinone 10 in 
69% yield. To put this result into perspective, the synthesis of 10 
using the 6-step approach that was outlined in Scheme 1 required 
5 chromatographic purifications and gave 10 in 29% overall 
yield.

Scheme 3. One-Pot Synthesis of Acrylamide 10 via the in situ Reduction of 
Aminonaphthoquinone 7.

Table 1. One-Post Amide Couplings-Substrate Scope.
Entry Product 1-pot yielda,b 6-step yield
1 69%

(57%)
29%

2 70%
(58%)

30%

3 66%
(55%)

41%

4 72%
(60%)

33%

5 71% c

(59%)
23%

6 71%c

(59%)
39%

7 40%c,

(33%)
-----d

8 73%
(61%)

32%

9 79%
(66%)

41%

Entry Product 1-pot yielda,b 6-step yield

10 77% -----d

11 51% -----d

aIsolated yield from compound 7. bYields in parentheses are calculated from 1,4-
naphthoquinone. cUsed 2 equivalent of acid chloride. dNot determined. 

We next explored the scope of the sequence (Table 1). As 
illustrated, a range of acid chlorides were amenable to the 
protocol giving overall yields that were significantly higher than 
the multi-step approach.7 Of note was that the reactions were 
relatively simple to perform, they did not require the purification 
of the intermediates, they generally did not result in alkene 
reduction, that sensitive substrates like dienamide 16 could be 
generated,10 and that -unsaturated amidonaphthoquinone 17 
did not undergo isomerization using this protocol.11 Limiting at 
this stage was that these conditions appear to be restricted to the 
use of acid chlorides; the use of EDC in the coupling of 8 with 
crotonic acid resulted in a 19% yield of 10. Also limiting in 
instances where the acid chloride might be valuable was that 
substrates having an α-substituent required the use of 2 
equivalents of the acid chlorides to obtain yields that were 
acceptable (entries 5-7).

We also were able to convert napthoquinones having 
substitution at the 3-position into the corresponding acrylamides. 
Specifically, 2-amino-3-methoxy and 2-amino-3-
chloronaphthaquinones were converted into acrylamides 19 and 
20,8,9 respectively, in good overall yields thus demonstrating 
some of the scope for this methodology (entries 10 and 11).12,13

To summarize, we have optimized and examined the scope of 
a one-pot method of synthesizing 2-amidonaphthoquinone 
derivatives from aminonapthoquinones. This method was shown 
to be generally superior when compared to stepwise approaches 
to this family of substrates. We will continue to utilize and 
optimize this protocol.
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