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Abstract: Curacin A (1), a novel antimitotic agent, was synthesized in a highly 
stereo-controlled manner. The key steps were (1) an asymmetric allylation using a 
chiral allyltitanium reagent and a double-asymmetric Simmons-Smith cyclopropanation 
to introduce three chiral centers, (2) Wittig and Wittig-Horner reactions to construct 
the C(3-4) and C(7-10) alkenes, and (3) a direct conversion of the thiazolidine to the 
thiazoline. Copyright © 1996 Elsevier Science Ltd 

Curacin A (1)is a novel antimitotic agent isolated from a Caribbean cyanobacterium, Lyngbya m a j u s c u l a ,  l 

and consists of a disubstituted thiazoline bearing a chiral cyclopropane ring and an aliphatic side chain. It was 
also reported that curacin A inhibited tubulin assembly by binding to the colchicine-binding site j, which is 
one of the two distinct drug-binding sites on tubulin. This result is intriguing because curacin A has little 
structural similarity to known natural and synthetic colchicine-site ligands. Thus, elucidation of the nature of 
curacin A-binding to tubulin should afford further insight into the molecular mechanism of tubulin-ligand 
interaction at this site, and could lead to the development of new bioactive agents. 

Several groups have reported synthetic approaches to curacin A .  2"4 The absolute configuration of 
curacin A was determined by chemical degradation and total synthesis by White et al. 2 In our previous 
paper 3, we reported on the synthesis of 2-(2-methyl)cyclopropyl-4-( 1-propenyl)thiazolines as a partial structure 
of curacin A and also defined the absolute configuration at three chiral centers of the thiazoline- 
methylcyclopropane moiety in curacin A. In this paper, we describe a highly stereo-controlled total synthesis 
of curacin A. 

The retrosynthetic disconnections are depicted below. We expected that the necessary three double 
bond geometries could be prepared from geraniol (C(9-10)) by Wittig-Homer reaction (C(7-8)) and Wittig 
reaction (C(3-4)). The chiral centers at C(2) and C(13) should be derived from a chiral synthon (L-cysteine) 
and an asymmetric allylation using a chiral allyltitanium reagent 5, respectively. The chiral methylcyclopropane 
moiety could be efficiently prepared from diethyl L-tartrate, using a double-asymmetric Simmons-Smith 
cyclopropanation as a key step. We intended to construct the thiazoline moiety by coupling of the carboxylic 
acid with the N-Boc thiazolidine through selective deprotection of the N, S-acetal group. 
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Regioselective epoxidation 6 of geraniol followed by acid-catalyzed hydrolysis and acetalization gave 
1, 3-dioxolane 2, a synthetic equivalent of aldehyde. The compound 2 was converted, via the bromide, to the 
corresponding phosphonate 3 in 75% yield. Wittig-Horner reaction of 3 and the PMB-protected aldehyde 4, 
prepared from 1, 4-butanediol, afforded the diene 5 (51%, EIZ=8.5/I) 7, which was separated by HPLC to give 
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the desired E-isomer. Deacetalization of 5 followed by oxidative cleavage of the diol gave the aldehyde 6 in 
93% yield. The asymmetric allylation of 6 with a chiral allyltitanium reagent 5, prepared from [(4R, 5R)-2, 
2-dimethyl-1, 3-dioxolane-4, 5-bis(diphenylmethoxy)]cyclopentadienyl-chlorotitanium ((R, R)-7) and 
allylmagnesium chloride, proceeded cleanly at -78°C to give the homoallylic alcohol $ in 95% yield and with 
excellent enantioselectivity (>99% ee), as determined from the tH- and ~3C-NMR spectra of its Mosher ester 
9. The alcohol 8 was converted to its methyl ether 10 in 89% yield. In deprotection of the PMB group in 10, 
treatment with DDQ resulted a complex mixture, but MgBr2.OEt2-Me2S treatment proceeded smoothly to give 
the known and desired alcohol (-)-11 in 76% yield. 2b' 8 The alcohol 11 was converted, via the iodide 12, to the 
phosphonium salt 13 according to the reported procedure 2b (Scheme 1). 
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Reagents end conditions: (a) OXONE ~, acetone-CH2CI2/phosphate buffer, pH 7.5-8.0, 0°C, 2 h (39% and 
recovery of geraniol, 37%); (b) PTSA, aq. acetone, 20°C, 2 h (67%); (c) CBr 4, Ph3P, CH2CI 2, 0°C, 1 h; (d) 
(EtO)3P, benzene, reflux, 2.5 h (75% from 2); (e) 4, t-BuOK, THF, 20°C, 1.5 h (51%, E/Z=8.5/1 and recovery of 4, 
13%), then HPLC separation; (f) PTSA, aq. MeOH, 20°C, 5 h (99%); (g) NalO 4 , aq. acetone, 20°C, 2 h (94%); 
(h) allylMgCI, (R, R)-7, THF, 0°C, 1 h, then 6, THF, -78°C, 1.5 h (95%); (i) (S)-(+)-MTPACI, pyridine, CH2CI 2, 
20°C, 0.5 h (66%); (j) Mel, Nail, DMF, 20°C, 2.5 h (89%); (k) MgBr2.OEt2, Me2S, CH2CI 2, 20°C, 2 h (76% and 
recovery of 10, 6%); (I) MsCI, pyridine, 0°C, 1 h, then Nal, acetone, reflux, 2 h (87%); (m)Ph3P, MeCN, reflux, 7 
h (quant.) 

Asymmetric synthesis of the cyclopropane moiety of 1 is shown in Scheme 2. We intended to 
transform two functional groups of diethyl L-tartrate simultaneously. The (Z, Z)-diester 14 was easily 
prepared from diethyl L-tartrate in two steps? Reduction of the diester 14 gave the corresponding bisallyl 
alcohol 15 in 58% yield. Bromination of 15 followed by reduction with LiA1H 4 gave the (Z, Z)-diene 16 in 
69% yield. Double Simmons-Smith reaction of 16 with E½Zn-CH2I 2 or Zn-Cu -CH2I 2 proceeded with excellent 
diastereofacial selectivity ~° to give the desired dicyclopropane 17 as the sole product in 63% or 60% yield, 
respectively. The compound 17 was converted, via the diol 18, to the corresponding aldehyde, which was 
further oxidized in situ with tMnO411 to give the known and desired (1 R, 2S)-2-methylcyclopropanecarboxylic 
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acid 19 in 81% yield. The optical purity (>99% ee) and absolute configuration of 19 were determined from its 
optical rotation 12 and the I H- and ~3C-NMR spectra of the Mosher ester 20 of the 2-methylcyclopropanemethanol 
derived from 18. 
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Reagents and conditions: (a) DIBAL-H, CH2Cl2, -78-0°0,  1.5 h (58%); (b) CBr4, Ph3P, 0H2CI2, 0°C, 0.5 h, 
then LiAIH4, ether, 35°C, 1 h (69%); (c) Et2Zn, CH212, CH2CI2, -25°C, 2.5 h (63%) or Zn-Cu, CH212, ether, 35°C, 
6 h (60%); (d) PTSA, aq. MeOH, 20°C, 2.5 h (92%); (e) NalO4,C H2CI2-H20, 20°C, 1.5 h; (f) KMnO4, t-BuOH- 
aq. KH2PO4, 20°C, 2 h (89% from 18); (g) NaBH 4, CH2CI2-MeOH , 0°C, 0.5 h; (h) (S)-(+)-MTPACI, pyridine, 
CH2CI2, 20°C, 1 h (57% from 18) 

The total synthesis of curacin A was accomplished as shown in Scheme 3. Reduction of the amide 21 
prepared from L-cysteine 13 gave the aldehyde 22 in 92% yield. Wittig reaction of the phosphonium salt 13 
and the aldehyde 22 afforded the thiazolidine 23 in 60% yield. None of the E-isomer was detected by 
IH-NMR analysis. The thiazoline moiety of 1 was synthesized from the N-Boc thiazolidine 23 in a stepwise 
manner.3.14 Selective deprotection of the N, S-acetal group of 23 was carried out in diluted TFA in water-saturated 
CHEC12 to give the N-Boc amino thiol 24, which was converted to the corresponding thiol ester using the 
carboxylic acid 19 and bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOPC1). Deprotection of the tert-Boc 

group of the thiol ester followed by refluxing in benzene, gave curacin A in 10% yield from 23. The 
physicochemical properties (IH- and 13C-NMR spectra, optical rotation) of the synthesized curacin A are 
identical with those reported)' 4~ 
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Reagents and conditions: (a) LiAIH 4, ether, 0°C, 0.5 h (92%); (b) 13, LiHMDS, THF, -78°C, 0.5 h, then 
22, THF, -78-0°C, 2 h (60% and recovery of 22, 25%); (c) TFA, CH2CI2, 20°C, 6 h; (d) (-)-19, BOPCI, Et3N, 
CH2CI 2, 20°C, 3 h; (e) TFA, CH2CI 2, 20°C, 2 h, then benzene, reflux, 2.5 h (10% from 23) 
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The effects of the synthesized curacin A and related compounds on microtubule assembly were 
examined. Curacin A showed high anti-tubulin activity (IC50=2.5 laM) under the conditions used ~5, though the 
PMB ether 10, the alcohol 11, the tetraene 2516 and the N-Boc thiazolidine 23 did not inhibit tubulin 
polymerization. These and our previous 3 results demonstrate that the combination of heterocyclic and lipid 
side chain moieties in curacin A is important for its anti-tubulin activity. Studies on the structure-activity 
relationship of curacin A are in progress. 
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