Synthesis and Antifungal Activity of Some New Benzimidazole Derivatives

Hakan Göker and Rahmiye Ertan

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ankara, Ankara, Turkey

Hülya Akgün

Department of Chemistry, Middle East Technical University, Ankara, Turkey

Nuran Yulug

Department of Microbiology, Faculty of Medicine, University of Hacettepe, Ankara, Turkey

Received February 26, 1990

Synthesis and antifungal evaluation of 5-ethoxycarbonyl-2-(substituted-benzyl or phenoxymethyl)benzimidazoles are reported. Structures of the compounds were elucidated with IR-, ¹H-NMR-, ¹³C-NMR-, mass-spectra and elemental analysis. Preliminary results show that none of the synthesized benzimidazole derivatives has antifungal activity at the concentration of 100 μ g/ml against *Candida parapsilosis*, *Candida stellatoidea*, and *Candida pseudotropicalis*.

Synthese und antimykotische Wirkung einiger neuer Benzimidazol-Derivate

Synthese und antimykotische Prüfung einiger 5-Ethoxycarbonyl-2-(subst. benzyl oder phenoxymethyl)benzimidazole werden beschrieben. Die Strukturen wurden durch IR-, ¹H-NMR, ¹³C-NMR und Massenspektren sowie Elementaranalysen gesichert. Erste Resultate zeigen, daß diese Benzimidazolderivate keine Aktivität gegen *Candida albicans, C. parapsilosis, C. Stellatoidea und C. pseudotropicalis* in der Konzentration 100 µg/ml haben.

Since the benzimidazole ring was shown to inhibit the growth of certain yeasts¹⁾ many benzimidazole compounds have been synthesized^{2,3)}. However, as resistance to benzimidazoles is developed within a short period of time, the use of benzimidazoles as agricultural fungicides was given up recently⁴⁾. The imidazoles, 1,2,4-triazoles, and pyrimidines which were prepared by chemical variations of benzimidazoles are most important anti-mycotica and agricultural fungicides, respectively³⁾.

In the present paper, the synthesis and antifungal activity of new simple benzimidazole derivatives are described.

Results and Discussion

The synthesis of the benzimidazole compounds involved two steps: 1) preparation of mono amide derivatives by reaction of ethyl 3,4-diaminobenzoate with chlorides of substituted phenyl or phenoxyacetic acids; 2) preparation of the final products, by dehydration of the intermediates **1-8**, with anhydrous ZnCl₂ and dry HCl gas. Only compound **9** was obtained by *Phillips'* method⁵⁾ in very low yield. - ¹³C-NMR shift assignments of compounds **1a-8a** and **9** are given in Tab. 1.

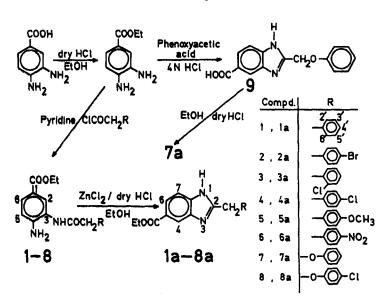


Table 1: ¹³C-chemical shift assignment of compounds 1a-9

					3	9	Ή					
Comp. number	' 1	2	3	4	5	6	7	8	9	10	11	R
1 a	14.2	32.3	165.2	133.7	126	114.3	135	133	115.4	155	60.3	135 128 135 126.0
2 a	13.9	32.3	165.3	135	127	114.4	135	132	115.7	154	61.35	142 124 Br
3 a	14.5	31.4	165.5	1 36 .6	127.2	114.7	135.4	132.5	115.9	154.8	61.3	128 128 135.5 131 CI
4 a	13.5	31.7	165	133.7	127	114.3	136.8	132.8	115.4	154.2	61.5	131.9 128 143 128 Cl 134.5
5 a	14.2	31.6	165	135	126.09	114.5	135	132	115.4	155.7	61.3	130.5 114 55.3 135 OCH ₃ 158.5
6 a	14.3	33	162	135.6	126.9	115.1	135.6	132.9	116.9	152.2	61,8	128,5 123 141 145 NO2
7 a	14.3	33	165	132.8	126.6	114.7	135.7	132.7	115.2	154.7	62.2	- 0-0-0-129.8 157.4
8 a	14.6	28.8	169	133.8	126.0	115.6	135.7	130.1	04.1	155.9	6 2.7	119 130.5 - 0 - O - Ci 156.3 130.7
9	-	-	166.4	130	125.1	115.2	130.1	130	115.3	153.3	64	121 128.5 - 0 - 121 158.3

 $CH_3CH_2 - C_3 - 0$

Antifungal activities of compounds **1a-8a**, and **9** against *Candida parapsilosis*, *C. stellatoidea*, *C. albicans*, and *C. pseudotropicalis* were studied by liquid dilution in the testtube (micrograms per ml)⁶⁾. Since the compounds were insufficiently soluble in water, all compounds were dissolved in DMSO (1 mg/ml) and then final concentrations were adjusted to 100 µg/ml, 50 µg/ml, 25 µg/ml by using liquid medium and in the presence of the pertinent fungus suspension. Final incolum of microorganism was realized as 10^{-5} - 10^{-6} cells/ml. Higher doses were not used because of the influence of DMSO. None of the compounds was active even at 100 µg/ml doses against the fungi mentioned above.

Experimental Part

Melting points: Büchi SMP-20 capillary m.p. apparatus, uncorrected. -CHN-microanalyses: Hewlett-Packard 185 C,H,N analyser. - ¹H-NMR (80,13 MHz) and ¹³C-NMR (20,1 MHz) spectra: Bruker AC-80 spectrometer, d₆-DMSO, TMS as internal standard, δ (ppm) scale. - Mass spectra: Varian MAT CH 7. - IR (KBr) SP-1100 Pye-Unicam. All N-C=Obands at 1655-1665 cm⁻¹, all O-C=O-bands at 1730-1735 cm⁻¹, if not stated otherwise. Ethyl 3,4-diaminobenzoat⁷⁾ was prepared in our laboratory; 3,4-diaminobenzoic acid from Merck, Fluka; phenylacetic acid derivatives from Aldrich. *Sabouraud* Dextrose Broth (Oxoid) liquid media was used for the antifungal activity.

Method A

The related phenoxyacetic acids or phenylacetic acids (7.35 mmol) were refluxed in benzene (5 ml) with SOCl₂ (2.5 ml) for 60 min at 80°C. Then solvent and excess of SOCl₂ were evaporated and ethyl 3,4-diaminobenzoate (7.5 mmol in 15 ml of benzene) and 7.35 mmol of pyridine were added. The mixture was refluxed for 3 h. Removal of the solvent gave a residue which was crystallized from CHCl₃/EtOH (2:8) to give compounds **1-8.** Melting points and yields of these intermediates are given below.

¹H-NMR spectra of 1-8: 1.30-1.40 (t, 3H, J = 7 Hz, CH_2CH_3), 4.25-4.30 (q, 2H, J = 7 Hz, CH_2CH_3), 3.65-4.75 (s, 2H, $COCH_2$ and OCH_3 protons of compound 5), 6.80-8.1 (aromatic protons), 8.1-8.2 (s, 1H, NHCO), 9.70 (s, 2H, NH₂). The integral values support the proton number.

Method B

To a mixture of 2 mmol of comp. 1-8 and absol. EtOH (20 ml) were added 11 mmol freshly prepared anhydrous ZnCl₂; after dissolving all ZnCl₂, dry HCl gase (approximately 1.5 g) was passed through the clear

Comp. No	1	2	3	4	5	6	7	8		
m.p. °C Yield (%)	170 27.4	201 51.2	203 31.8	195 47.2	165 45.6	248 31.5	168 48.3	213 57.3		

solution which was refluxed until the starting materials were used up (at least 3 h). Then, ethanol was evaporated, dilute NH_3 solution was added, and the mixture was extracted with CHCl₃. The chloroform solution was washed with water 3 times, dried (Na_2SO_4) and evaporated.

The oily residue was dissolved in EtOH, 0.02 ml HCl acid (25 %) were added and the mixture was stirred vigorously. After addition of ether, the HCl salts of the benzimidazole derivatives **1a-8a** precipitated.

2-Phenylmethyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (1a)

1a was obtained from compound 1 as white crystals, m.p. 233°C, yield 47.3 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 4.60 (s, 2H, CH₂), 7.25-7.6 (m, 5H, phenyl), 7.9 (dd, $J_{7,6} = 8$ Hz, $J_{7,4} = 0.7$ Hz, 1H, H-7), 8.1 (dd, $J_{6,7} = 8$ Hz, $J_{4,6} = 1.4$ Hz, 2H, H-4,6), 8.30 (s, 1H, N¹-H), 8.75 (broad s, N⁺-H). - MS (70 eV) m/z: 280 (100 %, M⁺), 251 (13), 235 (50), 207 (13), 91 (8). - C₁₇H₁₇O₂N₂Cl (316.5) Calcd. C 64.5 H 5.37 N 8.85 Found C 64.8 H 5.10 N 9.10.

2-(4-Bromophenyl)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (2a)

2a was obtained from 2 as white needles, m.p 255°C, yield 43 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 4.60 (s, 2H, CH₂), 7.55 (s, 4H, H-2', 3', 5', 6'), 7.8 (dd, $J_{7,6} = 8$ Hz, $J_{7,4} = 0.7$ Hz, 1H, H-7), 8.1 (dd, $J_{6,7} = 8$ Hz, $J_{4,6} = 1.4$ Hz, 2H, H-4,6), 8.25 (s, 1H, N¹-H), 9.70 (braod s, N⁺-H). - MS (70 eV) m/z: 360 (100 %, M⁺), 358 (100, M⁺), 345 (12), 343 (12), 331 (16), 329 (16), 315 (56), 313 (56), 250 (12), 207 (28), 172 (36), 170 (36), 118 (44). - $C_{17}H_{16}O_2N_2BrCl$ (395.5) Calcd. C 51.6 H 4.05 N 7.08 Found C 51.5 H 4.05 N 7.50.

2-(2-Chlorophenyl)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (3a)

3a was obtained from 3 as white needles, m.p 216°C, yield 38 %. - 1 H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 4.6 (s, 2H, CH₂), 7.25-7.7 (m, 4H, H-3',4',5',6'), 7.8 (dd, J_{7,6} = 9 Hz, J_{7,4} = 0.7 Hz, 1H, H-7), 8.1 (dd, J_{6,7} = 9 Hz, J_{4,6} = 1.45 Hz, 2H, H-4,6), 8.30 (s, 1H, N¹-H), 6.75 (s, N⁺-H). - MS (70 eV) m/z: 316 (4 %, M⁺), 314 (12, M⁺), 280 (100), 272 (5), 270 (16), 265 (12), 251 (32), 206 (30), 127 (5), 125 (15), 118 (17), 91 (8). C₁₇H₁₆O₂N₂Cl₂ (351) Calcd. C 58.1 H 4.56 N 7.98 Found C 58.0 H 4.63 N 8.25.

2-(4-Chlorophenyl)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (4a):

4a was obtained from 4 as white crystals, m.p 252°C, yield 44.4 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 4.6 (s, 2H, CH₂), 7.45 and 7.6 (2d, J_{2',3'} and J_{5',6'} = 12 Hz, A₂X₂, 4H, H-2',3',5',6'), 7.8 (d, J_{7,6} = 8 Hz, 1H, H-7), 8.1 (dd, J_{6,7} = 8 Hz, J_{4,6} = 1.45 Hz, 2H, H-4,6), 8.30 (s, 1H, H-7), 10.4 (braod s, N⁺-H). - MS (70 eV m/z): 316 (33 %, M⁺), 314 (100, M⁺), 301 (3), 299 (10), 287 (5), 285 (15), 271 (17), 269 (52), 250 (9), 243 (4), 241 (11.5), 128 (10), 126 (30), 118 (10), 91 (9). - C₁₇H₁₆O₂N₂Cl₂ (351) Calcd. C 58.1 H 4.56 N 7.98 Found C 57.9 H 4.63 N 8.20.

2-(4-Methoxyphenyl)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (5a)

5a was obtained from 5 as white needles, m.p 218°C, yield 47.6 %. - 1 H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 3.7 (s, 3H, OCH₃), 4.40 (q, J = 7

Hz, 2H, CH₂CH₃), 4.50 (s, 2H, CH₂), 6.9 and 7.45 (2d, $J_{2',3'}$ and $J_{5',6'} = 9$ Hz, A_2X_2 , 4H, H-2', 3', 5', 6'), 7.8 (d, $J_{7,6} = 8$ Hz, 1H, H-7), 8.1 (dd, $J_{6,7} = 8$ Hz, $J_{4,6} = 1.45$ Hz, 2H, H-4,6), 8.30 (s, 1H, N¹-H). - MS (70 eV) m/z: 310 (100 %, M⁺), 295 (29), 265 (29), 221 (8), 118 (10). - C₁₈H₁₉O₃N₂Cl (346.5) Calcd. C 62.34 H 5.48 N 8.08 Found C 62.2 H 5.90 N 8.15

2-(4-Nitrophenyl)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (6a)

6a was obtained from **6** as white crystals, m.p 269°C, yield 36 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 4.70 (s, 2H, CH₂), 7.25 (broad s, N⁺-H), 7.7 and 7.9 (2d, J_{2',3'} and J_{5',6'} = 3.5 Hz, A₂X₂, 4H, H-2',3',5',6'), 8.05 (dd, J_{7,6} = 8 Hz, J_{4,7} = 0.8 Hz, 1H, H-7), 8.15-8.35 (m, 3H, H-4,6 and N¹-H). - MS (70 eV) m/z: 325 (100 %, M⁺), 310 (12), 296 (13), 280 (78), 234 (12), 207 (10). - C₁₇H₁₆O₄N₃Cl (361.5) Calcd. C 56.4 H 4.43 N 11.6 Found C 56.1 H 4.38 N 11.3

2-(Phenoxy)methyl-5-[1H]benzimidazole carboxylic acid ethyl ester HCl (7a)

7a was obtained from 7 and esterification of compound 9, by using dry HCl and absol. EtOH, as white powder, m.p 242°C, yield 44 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 5.70 (s, 2H, CH₂), 6.9-7.5 (m, 5H, H-phenyl), 7.9 (d, $J_{7,6} = 8$ Hz, 1H, H-7), 8.1 (dd, $J_{6,7} = 8$ Hz, $J_{4,6} = 1.45$ Hz, 2H, H-4.6), 8.30 (broad s, N⁺-H), 8.4 (s, 1H, N¹-H). - MS (70 eV) m/z: 296 (7 %, M⁺), 203 (100), 189 (14), 174 (29), 158 (13), 131 (29), 65 (10). - C₁₇H₁₇O₃N₂Cl (332.5) Calcd. C 61.35 H 5.11 N 8.42 Found C 61.0 H 5.05 N 8.10.

$2\-(4\-Chlorophenoxy)$ methyl-5-[1H] benzimidazole carboxylic acid ethyl ester HCl (8a)

8a was obtained from **8** as white powder, m.p 267°C, yield 41 %. - ¹H-NMR: 1.40 (t, J = 7 Hz, 3H, CH₂CH₃), 4.40 (q, J = 7 Hz, 2H, CH₂CH₃), 5.70 (s, 2H, CH₂), 6.25 (braod s, N⁺-H), 7.2 and 7.4 (2d, J_{2',3'} and J_{5',6'} = 10 Hz, A₂X₂, 4H, H-2',3',5',6'), 7.8 (d, J_{7,6} = 8 Hz, 1H, H-7), 8.1 (dd, J_{6,7} = 8 Hz, J_{4,6} = 1.45 Hz, 2H, H-4,6), 8.30 (s, 1H, N¹-H). - MS (70 eV) m/z: 332 (3 %, M⁺), 330 (10, M⁺), 287 (1.5), 285 (5), 203 (100), 175 (41), 158 (11), 132 (30). - C₁₇H₁₆O₃N₂Cl₂ (367). - Calcd. C 55.6 H 4.36 N 7.63 Found C 55.9 H 4.72 N 7.67.

2-(Phenoxy)methyl-5-[1H]benzimidazole carboxylic acid (9)

Ethyl 3,4-diaminobenzoat (0.905 g, 5 mmol), phenoxyacetic acid (0.76 g, 5 mmol) and 4N HCl (25 ml) were heated under refluxed for 4 h. After cooling, the mixture was adjusted to pH 7 with 10 % NaOH. The precipitated solid was collected, and washed with water. After drying, the crude product was purified on a column of silicagel (0.06-0.20 mm diameter) with CHCl₃: isopropanol (8:2), m.p 135°C, Yield 19.8, IR cm⁻¹: 1690 (COOH), ¹H-NMR: 5.40 (s, 2H, CH₂), 6.9-7.5 (m, 5H, H-phenyl), 7.6 (d, $J_{7.6} = 8$ Hz, 1H, H-7), 7.9 (dd, $J_{6.7} = 8$ Hz, $J_{4.6} = 1.43$ Hz, 2H, H-4,6), 8.30 (s, 1H, N¹-H). - MS (70 eV) m/z: 268 (14 %, M⁺), 174 (100), 130 (10). - C₁₅H₁₂O₃N₂ (268) Calcd. C 67.16 H 4.48 N 10.45 Found C 67.5 H 4.18 N 10.75

References

- 1 D.W. Woolley, J. Biol. Chem. 152, 225 (1944).
- 2 H.P.R. Seeliger, Mykosen 1, 1 (1958).

- 3 D. Berg, K.-H. Büchel, M. Plembel, and A. Zywietz, Mykosen 29, 221 (1986); C.A. 105, 34969z (1986)
- 4 L.C. Davidse and W. Flach, Biochim. Biophys. Acta 543, 82 (1978).
- 5 M.A. Phillips, J. Chem. Soc. 1928, 2395.

- 6 G. Anderson, Testing of Susceptibility to Antimicrobial Agents in Body Fluids. In: J.E. Blair, E.H, Lennette, J.P. Truant: Manual of Clinical Microbiology. Williams-Wilkins company, Baltimore, Maryland 1970.
- 7 E. Ritsert and W. Epstein, Ger. Pat. 151,725; Chem. Zentr. 1904, 1587. [Ph804]