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Decarboxylative Nazarov cyclization of chiral cyclic enol
carbonates proceeded to afford chiral 2-cyclopentenones with
excellent chirality transfer under thermal conditions without any
catalyst. Interestingly, the thermal decarboxylative Nazarov
cyclization furnished the desired product with better chirality
transfer than the Lewis acid-catalyzed reaction.
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Asymmetric construction of cyclopentenone units is highly
desired due to their wide utility as building blocks for the
synthesis of a variety of natural products and biologically-active
compounds.1 Nazarov cyclization, a conrotatory 4π electro-
cyclization reaction, is promoted by a Lewis acid to provide the
stereoselective synthesis of cyclopentenones.2 The consideration
of torquoselectivity,3 i.e., the control of clockwise/counter-
clockwise rotation in electrocyclization reactions, is essential for
the production of chiral cyclopentenones based on the Nazarov
cyclization, because it defines the newly generated stereochem-
istry. Some solutions for this issue, such as a substrate control
strategy using a chiral auxiliary,3 etc.,4 have been reported.

We have recently developed an asymmetric synthesis of
cyclopentenones based on chirality transfer through decarboxyl-
ative Nazarov cyclization of cyclic enol carbonates by using a
Lewis acid catalyst.5 In a general Nazarov cyclization, the forma-
tion of the pentadienyl cation intermediate 1 involving the loss of
chirality at C(2) (Scheme 1) is inevitable. However, in the
decarboxylative Nazarov cyclization, cleavage of the C(2)-O(2)
bond and subsequent bond formation between C(4) and C(5)
occur before racemization, and therefore the stereochemistry at

C(2) of the 5-membered enol carbonate is transferred to C(4)
and C(5) of the product.6 The cyclic carbonates were prepared
by silver-catalyzed incorporation of carbon dioxide into chiral
propargyl alcohols. The efficiency of the chirality transfer is
strongly affected by the reaction conditions, such as catalysts and
solvents, which can contribute to the stabilization of the cationic
intermediate 1. Additionally, the introduction of electron-
donating groups on the substrates causes a decrease in chirality
transfer. For example, the reaction of 2b (R = 4-CH3C6H4, 82%
ct) showed lower chirality transfer compared with 2a (R = Ph,
95% ct) (Scheme 2). To examine the effect of the substituent R in
more detail, we newly prepared 2c (R = 4-MeOC6H4) in this
work and employed it in the reaction, which resulted in a drastic
decrease of chirality transfer (21% ct). We hypothesized that
good chirality transfer occurs when O(2) tightly coordinates to
C(2) before the decarboxylation and C(4) and C(5) bond forma-
tion. However, in the case of 2c, by addition of a Lewis acid and
the introduction of an electron-donating group on the substrate,
the contribution of a zwitterionic structure, such as 5c, is not
negligible compared with the suitable structure 4c (Scheme 3).
To improve the chirality transfer, the development of a thermal
decarboxylative Nazarov cyclization for the asymmetric synthe-
sis of 2-cyclopentenones is described in the present report.7

Based on this hypothesis, we initially investigated whether
the reaction proceeds under catalyst-free conditions. The
reaction temperature and solvent were screened first (Table 1).
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Scheme 1. Decarboxylative Nazarov cyclization.
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Scheme 2. Initial examination of the substituent effect.
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Scheme 3. Plausible intermediates.
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Although the reaction of 2c8,9 did not proceed at 40 °C (Entry 2),
it was fully converted into 3c at 60 °C in 80% yield with 79% ct
(Entry 3).10,11 At higher temperatures, 2c was consumed faster
and the selectivity was maintained (Entry 4). When the reaction
was carried out in benzene or hexafluorobenzene, a decrease in
ct was observed (Entries 5 and 6). Alkyl-substituted benzenes,
such as mesitylene and toluene, were employed for this reaction
to give 3c with 75% ct and 77% ct, respectively (Entries 7 and
8). The use of trimethylphenylsilane showed good chirality
transfer (81% ct), but with a slight decrease in the yield of 3c
(Entry 9). Hydrocarbon solvents, such as cyclohexane, did not
have a favorable effect on the selectivity of this reaction
(Entry 10). Based on the above results, it was found that
benzene derivatives bearing a bulky substituent were suitable as
solvents for this reaction in terms of the chirality transfer, with
tert-butylbenzene being the optimal solvent.

With the optimized reaction conditions in hand, the scope of
the thermal decarboxylative Nazarov cyclization was examined
and compared with the results under Lewis acid-catalyzed con-
ditions. The reactions of 2d and 2e bearing a 2,4,6-trimethoxy
group and a 4-methylthiophenyl group at R2, respectively,
proceeded to provide 3d and 3e in good yields with a large
improvement in the chirality transfer (Entries 2 and 3). Next,
introduction of an electron-donating group on R1 was attempted.
Substrates 2f and 2g substituted with the PMP group and the
MOM-protected phenolic group were tolerant to the conditions,
and the corresponding cyclopentenones 3f and 3g were obtained
in 85% and 93% yields with 98% ct and 79% ct, respectively
(Entries 4 and 5). The reaction time was shortened and the yield
of 3f was further improved to 87% by microwave irradiation.
Substrates containing 3,4-dimethoxyphenyl (2h) and 4-methyl-
thiophenyl (2i) groups at R1 were also applicable and a signi-
ficant improvement of chirality transfer was observed under
thermal conditions (Entries 6 and 7). The thermal reaction of 2j

Table 1. Examination of reaction conditions
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Entry Solvent Temp/°C Time/h Yield/%a Ct/%b

1c t-butylbenzene ¹40 12 72 21
2 t-butylbenzene 40 96 n. r. ®

3 t-butylbenzene 60 72 80 79
4 t-butylbenzene 80 12 84 81
5 benzene 60 30 83 71
6 C6F6 70 72 81 75
7 mesitylene 80 12 87 75
8 toluene 60 30 84 77
9 trimethylphenylsilane 80 12 74 81
10 cyclohexane 70 90 86 69
aIsolated yields. bOptical purity was determined by HPLC on a
chiral stationary phase. Chirality transfer was calculated using:
Ct (%) = ee of 3c (% ee)/ee of the corresponding propargyl
alcohol 6c (% ee). cB(C6F5)3 (10mol%) and MS 5¡ was used.
n. r. = no reaction.
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bearing a tri-substituted olefin with a PMP group at R2

proceeded as successfully as the reaction under Lewis-acid
conditions (Entry 8). On the other hand, a large difference in
chirality transfer was observed depending on the reaction
conditions in the case of the synthesis of tetrasubstituted 2-
cyclopentenone 3k having a PMP group at R1 (Entry 9). The
conversion of 2l derived from a terminal alkyne showed lower
reactivity and the corresponding 3l was obtained with much
better chirality transfer than under Lewis acid conditions
(Entry 10). When substrates 2m­2o were employed under the
thermal conditions, the efficient construction of the correspond-
ing cyclopentenones 3m­3o was accomplished (Entries 11­13).12

In summary, the asymmetric synthesis of 2-cyclopentenone
derivatives based on decarboxylative Nazarov cyclization
involving chirality transfer under thermal conditions was
achieved using chiral cyclic carbonates, which were prepared
by silver-catalyzed incorporation of carbon dioxide into a chiral
propargyl alcohol. The substrate scope was successfully ex-
tended by the development of catalyst-free conditions. Further
investigation of the reaction mechanism and application of the
reaction to the synthesis of more complex molecules are
underway.

Supporting Information is available on https://doi.org/
10.1246/cl.190763.
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