(Chem. Pharm. Bull.) 29(7)1951—1956(1981)

Marine Natural Products. VIII.¹⁾ Bioactive Triterpene-Oligoglycosides from the Sea Cucumber *Holothuria leucospilota* Brandt (2). Structure of Holothurin A

Isao Kitagawa,*,^a Takao Nishino,^a Motomasa Kobayashi,^a and Yoshimasa Kyogoku^b

Faculty of Pharmaceutical Sciences, Osaka University,^a 133-1, Yamada-kami, Suita, Osaka 565, Japan, and Institute for Protein Research, Osaka University,^b 5311, Yamada-kami, Suita, Osaka 565, Japan

(Received February 16, 1981)

The chemical structure of holothurin A, the major lanostane-type triterpene oligogly-coside from the Cuvierian tubules of the sea cucumber *Holothuria leucospilota* Brandt (=H. vagabunda Selenka), has been elucidated to be 3-O-[β -D-3-O-methylglucopyranosyl-(1-3)- β -D-glucopyranosyl(1-4)- β -D-quinovopyranosyl(1-2)- β -D-xylopyranosyl]-holothurigenol 4'O-sodium sulfate (8), on the basis of chemical, physicochemical, and biochemical evidence. Holothurin A (8) corresponds to the 4"-O-[3"'-O-(β -D-3"''-O-methylglucopyranosyl)- β -D-glucopyranoside] of holothurin B (6), which is the major oligoglycoside of the body walls of the same sea cucumber.

Keywords—sea cucumber; Holothuria leucospilota; lanostane-type oligoglycoside; holothurin A; 14 H NMR; 13 C NMR; CD; snail enzyme; crude naringinase; T_1

In the preceding paper,¹⁾ we reported the isolation of two lanostane-type triterpene oligoglycosides named holothurin A and holothurin B from the sea cucumber *Holothuria leucospilota* Brand (=H. vagabunda Selenka, Japanese name: nisekuro-namako) and also described in detail evidence for the chemical structure of holothurin B (6) which is the major oligoglycoside of the body walls of the sea cucumber. As a continuation of this study, we have clarified the chemical structure of holothurin A (8), which is the major oligoglycoside of the Cuvierian tubules of the same sea cucumber. This paper deals with the details of the investigation.²⁾

Holothurin A (8), $C_{54}H_{85}NaO_{27}S$, isolated from the Cuvierian tubules of the sea cucumber as described in our preceding paper,¹⁾ was crystallized from aq. 95% ethanol as colorless needles of mp 228—230 °C. The ultraviolet (UV) spectrum of holothurin A shows no absorption maximum, while the infrared (IR) spectrum shows absorption bands at 3420 (br) and 1070 (br) cm⁻¹ which are ascribable to the glycosidic structure. The presence of a sulfate group in holothurin A has been suggested by the positive potassium rhodizonate test^{1,3)} and by IR absorption bands observed at 1225 and 827 cm⁻¹.^{1,4)} Furthermore, the IR spectrum suggests the presence of a γ -lactone moiety, as in holothurin B (6), in view of the presence of an absorption band at 1745 cm⁻¹ together with a negative maximum of $[\theta]_{224}$ —6400 observed in the circular dichroism (CD) spectrum.^{1,5)} The CD spectrum also suggests that holothurin A possesses a 9(11)-ene moiety in the lanostane-type carbon skeleton in view of a positive maximum of $[\theta]_{200}$ +41600.^{1,5)}

On acidic hydrolysis, holothurin A (8) liberated the same artifact aglycone, 22,25-oxidoholothurinogenin (1), as was obtained from holothurin B (6), together with equimolar amounts of xylose, quinovose, glucose, and 3-O-methylglucose. In the carbon nuclear magnetic resonance (13 C NMR) spectrum (taken in pentadeutero(d_5 -)pyridine) of holothurin A (8) (Table I), signals due to the aglycone carbons are observed at chemical shifts almost identical with those for the aglycone carbon signals of holothurin B (6), thus suggesting that holothurin A contains the same genuine aglycone holothurigenol (2), 10 with a sugar moiety which includes a sulfate

Vol. 29 (1981)

group attached at the 3β -OH group, as holothurin B. The ¹³C NMR spectrum also indicates β -orientation of the four glycosidic linkages of the above-mentioned monosaccharide moieties in holothurin A in view of the signals observed at δ 105.7, 105.2, 105.1, and 104.66 (Table I).

Chart 1

In order to elucidate the structure of the oligosaccharide moiety, holothurin A (8) was subjected to enzymic hydrolysis using snail enzyme^{1,7)} to furnish two prosapogenols, DS-Pro-B (3)¹⁾ (major) and Pro-B (4)¹⁾ (trace), together with holothurin B (6). On the other hand, enzymic hydrolysis of holothurin A with crude naringinase⁸⁾ yielded Pro-B (4) and holothurin B (6). Therefore, it has become evident so far that holothurin A is a tetraglycoside comprising holothurin B (6), glucose, and 3-O-methylglucose.

When holothurin A (8) was subjected to solvolysis with dioxane and pyridine,^{1,9)} a crystalline desulfated derivative DS-HL-A (7) was obtained. The preser vation of the γ -lactone and the 9(11)-ene moieties in DS-HL-A is unequivocal on the basis of the CD spectrum^{1,5)}

TABLE I. ¹³C-NMR Data for Holothurin A (8), B (6), and DS-HL-A (7) (25.05 MHz, d_5 -py., δ c)

Carbon	Holothurin ¹⁾ B (6)	DS-HL-A ^{a)} (7)	Holothurin ^{a)} A (8)
1	35.7(t) ^{b)}	35.7(t)	35.5(t)
2	27.4(t)°	27.4(t)°)	27.4(t)°
3	88.7(d)	88.7(d)	88.7(d)
4	40.0(s)	40.1(s)	40.0(s)
5	52.6(d)	53.1(d)	52.9(d)
6	20.3(t)	20.3(t)	20.3(t)
7	28.1(t)°	28.1(t) ^{c)}	28.2(t)°)

Carbon	Holothurin ¹⁾ B (6)	DS-HL-A ^{a)} (7)	$egin{aligned} \operatorname{Holothurin}^{a)} \ A\ (8) \end{aligned}$
8	40.9(d)	41.1(d)	41.0(d)
9	153.6(s)	153.9(s)	153.7(s)
10	39.7(s)	39.8(s)	39.7(s)
11	115.5(d)	115.6(d)	115.6(d)
12	71.4(d)	71.7(d)°)	71.7(d)°)
13	58.7(s)	59.2(s)	59.0(s)
14	45.9(s)	46.0(s)	46.0(s)
15	27.1(t)	27.1(t)	27.2(t)
16	38.4(t)	38.6(t)	38.6(t)
17	89.7(s)	89.8(s)	89.7(s)
18	174.4(s)	174.2(s)	174.3(s)
19	18.8(q)	18.9(q)	19.0(q)
20	86.5(s)	86.5(s)	86.5(s)
21	22.5(q)	22.5(q)	22.5(q)
22	80.6(d)	80.8(d)	80.7(d)
23	36.4(t)	36.6(t)	36.6(t)
24	28.7(t)°)	28.7(t)°)	28.7(t)°)
25	81.3(s)	81.3(s)	81.3(s)
26	$28.7(q)^{c,d}$	$28.7(q)^{c,d}$	$28.7(q)^{c,d}$
27	$28.1(q)^{c,d}$	$28.1(q)^{c,d}$	$28.2(q)^{c,d}$
28	21.2(q)	21.3(q)	21.4(q)
29	$27.4(q)^{c}$	27.4(q)°)	$27.4(q)^{c}$
30	16.7(q)	16.8(q)	16.7(q)

Carbon	DS-HL-A ^{a)} (7)	$egin{aligned} \operatorname{Holothurin}^{a)} \ A\ (8) \end{aligned}$	Me glycopyranoside
1′	105.5	105.7	106.0)
2′	83.9	83.1	74.6 $ _{\text{Me }\beta\text{-D-xylo-}}$
3′	$\overline{77.8}$	76.7c)	78.1 pyranoside
4'	70.9	74.9	70.9 (OMe: 56.6)
5′	66.4	63.8	67.0
1"	105.4^{d}	105.2^{d}	105.3
2''	76.0	76.0	76.6
3″	76.3	76.7°)	78.0 Me β-D-quino-
4''	87.1	86.5	77.2 vopyranoside
5′′	71.7 ^{c)}	$\overline{71.7}^{c)}$	$73.8 \mid (OMe: 56.5)$
6"	18.2	17.9	18.5)
1′′′	105.3^{d}	105.1^{d}	105.5 \
2′′′	73.6	73.9	74.9
3′′′	88.4	88.1	78.3 Me β -D-gluco- pyranoside
4′′′	$\overline{70.9}$	70.8	/1.4
5′′′	77.8	77.3	78.2 (OMe: 56.7)
6′′′	62.5	62.2	62.7)
1''''	104.6	104.6	105.5 }
2''''	74.9	74.9	74.6
3′′′′	87.8	87.7	$\begin{array}{c c} 88.2 & \text{Me 3-O-Me-}\beta\text{-I}\\ \end{array}$
4''''	70.0	69.5	10.1 (aluconyranosi
5′′′′	78.1	78.0	78.0 (OM 50.5)
6''''	62.5	61.9	02.1
3′′′′OMe	60.4	60.5	60.8)

a) Measured at 60°C for 8 and at 70°C for 7.
 b) Abbreviations given in parentheses denote signal patterns observed in the off-resonance experiments.
 c) The two-carbon intensities of overlapping signals were confirmed by the hetero-decoupling method without NOE.
 d) Assignments may be interchangeable in the same vertical column.

: $[\theta]_{225}$ —8600 (neg. max.) and $[\theta]_{202}$ +59000 (pos. max.). Methylation of DS-HL-A with methyl iodide and a dimsyl carbanion¹⁾ yielded a fully methylated trideca-O-methyl derivative (7a), whick lacks hydroxyl absorption in its IR spectrum. The ¹H NMR spectrum of the methyl ether exhibits four anomeric proton doublets at δ 4.19, 4.27, 4.54, and 4.57 (J=7 Hz for each), thus supporting the presence of four β -glycosidic linkages (4C_1) in holothurin A (8), which is in good accord with the above-mentioned ¹³C NMR analysis (Table I).

On methanolysis with anhydrous 2.5 N hydrogen chloride in methanol, the trideca-O-methyl ether (7a) liberated methyl pyranosides of 2,3,4,6-tetra-O-methylglucose, 2,4,6-tri-O-methylglucose, 2,3-di-O-methylquinovose, and 3,4-di-O-methylxylose. On the other hand, methanolysis of the dodeca-O-methyl ether (8a), which was prepared from holothurin A (8) as described for 7a, furnished methyl pyranosides of 2,3,4,6-tetra-O-methylglucose, 2,4,6-tri-O-methylglucose, 2,3-di-O-methylquinovose, and 3-O-methylxylose.

Based on the combined evidence described above, the chemical structure of holothurin A has been elucidated to be 4"-O-[3"'-O-(β -D-3"''-O-methylglucopyranosyl)- β -D-glucopyranosyl]-holothurin B (8). This structure is consistent with values for the spin-lattice relaxation time (T_1) measured in d_5 -pyridine for the oligosaccharide carbons of DS-HL-A (7). As shown in Fig. 1, the average NT_1 values (N=number of proton(s) attached to specific carbons) for skeletal carbons of individual carbohydrate units in DS-HL-A are 0.26 (for 3-O-methylglucose), 0.23 (glucose), 0.22 (quinovose), and 0.18 (xylose) sec. The NT_1 value for the non-reducing terminal 3-O-methylglucose is longest and that for the reducing terminal xylose is shortest, both being in agreement with the sequence of monosaccharide units¹⁰ in DS-HL-A (7).

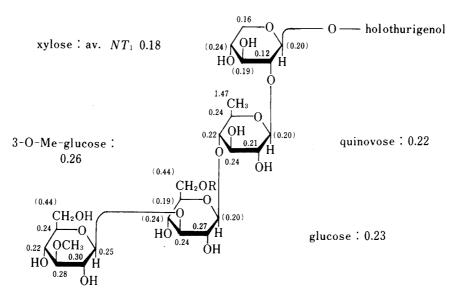


Fig. 1. NT_1 Values (sec) for DS-HL-A (7)¹⁴)

Chart 2

As mentioned briefly in our preceding paper,¹⁾ Chanley et al. proposed a partial structure 9 for "holothurin A" which was isolated from the Bahamean sea cucumber Actinopyga agassizi¹¹⁾ and Hashimoto et al. suggested the probable identity of "holothurin A" from A. agassizi with holothurin A from H. leucospilota.¹²⁾ However, as is apparent from our present investigation, the partial structure 9 is inconsistent with the structure of holothurin A (8). Recently, we obtained the Cuvierian tubules of A. agassizi and elucidated the chemical composition of "holothurin A" as comprising holothurin A (8) and a new oligoglycoside in a ratio of approximately 1: 3;¹³⁾ the details will be reported in a forthcoming paper.

We examined some antimicrobial activities of holothurin A (8), holothurin B (6), and their prosapogenols (3, 4, 5, 7) and the artifact aglycone (1). The moderate activities found for 6, 7, and 8 will be reported in a future paper.

Experimental

The instruments used to obtain physical data and the experimental conditions for chromatography were the same as in our preceding paper¹⁾ unless otherwise specified.

Holothurin A (8)—An analytical sample of holothurin A (8) isolated from the title sea cucumber¹⁾ was obtained by recrystallization from aq. 95% EtOH as colorless needles of mp 228—230°C, [α]_D¹⁸ – 14.9° (c=0.1, H₂O). Anal. Calcd for C₅₄H₈₅NaO₂₇S: C, 53.10; H, 7.03; Na, 1.88; S, 2.62. Found: C, 52.92; H, 7.00; Na, 1.84; S, 2.78. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (br), 1745, 1634 (w), 1060 (br); 1225, 827 (sulfate). UV (EtOH): transparent above 210 nm. CD (c=6.67 × 10⁻⁴, MeOH, 23°C): [θ]₂₄₃ 0, [θ]₂₂₄ –6400 (neg. max.), [θ]₂₁₆ 0, [θ]₂₀₀ +41600 (pos. max.). ¹³C NMR: Table I. Holothurin A gave a yellow spot on the paper at Rf 0.56 in the potassium rhodizonate test.^{1,3})

Acidic Hydrolysis of Holothurin A (8)——A solution of 8 (200 mg) in aq. 3 n HCl (16 ml) was heated in a boiling water-bath for 2 h. After cooling, the reaction mixture was centrifuged to separate a precipitate (56 mg), which was purified by column chromatography (SiO₂ 5 g, n-hexane-acetone=8:1) to furnish 22,25-oxidoholothurinogenin (1, 38 mg), mp 301°C (AcOEt).¹⁾ The supernatant was neutralized with Amberlite IRA-400 (OH-) and evaporated to dryness under reduced pressure to yield a residue which was examined by PPC, TLC, and GLC as described in the preceding paper.¹⁾ Quinovose, 3-O-methylglucose, xylose, and glucose were identified in a ratio of 1:1:1:1.

Hydrolysis of Holothurin A (8) with Snail Enzyme——A glycosidase mixture (300 mg), which was prepared from snail as described in the preceding paper, $^{1,7)}$ was added to a mixture of 8 (352 mg) in AcOH–AcONa buffer (pH 5.2, 200 ml) and the whole was incubated with gentle stirring at 40°C for 14 days. After treatment with n-BuOH (10 ml), the reaction mixture was heated in a boiling water-bath for 15 min and treated with Celite 535 (20 g) with stirring, then filtered. The filtrate was extracted with n-BuOH five times (50 ml each) and removal of the solvent from the n-BuOH extract under reduced pressure gave a residue which was purified by column chromatography (SiO₂ 30 g, CHCl₃-MeOH=40: 1-CHCl₃-MeOH-1-QO=7: 3: 1, lower phase) to furnish DS-Pro-B (3, 105 mg), holothurin B (6, 43 mg), and Pro-B (4, 3 mg), which were identical with the corresponding authentic samples¹ as judged by mixed mp determination, TLC, and IR spectroscopy.

Hydrolysis of Holothurin A (8) with Crude Naringinase—A solution of 8 (500 mg) in water (200 ml) was treated with crude naringinase (1 g)⁸⁾ and the whole was incubated with gentle stirring at 34°C for 4 days. After addition of n-BuOH (200 ml) and water (100 ml), the whole mixture was heated in a boiling water-bath for 20 min and filtered. The filtrate was taken in a separatory funnel and the n-BuOH phase was separated. The aqueous phase was extracted with n-BuOH three times (50 ml each) and the combined n-BuOH phase was evaporated to dryness under reduced pressure. Column chromatography (SiO₂ 40 g, CHCl₃-MeOH- H_2 O=7:3:1, lower phase) of the residue furnished Pro-B (4, 254 mg) and holothurin B (6, 71 mg), which were identical with the corresponding authentic samples¹⁾ as described above.

Solvolysis of Holothurin A (8) giving DS-HL-A (7)—A solution of 8 (500 mg) in pyridine (5 ml) was heated under reflux for 5 min. The solution was then treated with dioxane (5 ml) and heated under reflux again for 3 h. After cooling, the reaction mixture was filtered and a residue, which was obtained after removal of the solvent from the filtrate under reduced pressure, was crystallized from MeOH to furnish DS-HL-A (7, 307 mg). An analytical sample of 7 was prepared by recrystallization from 80% EtOH as colorless needles of mp 231—233°C, $[\alpha]_{\rm D}^{22}$ – 27.6° (c=0.5, MeOH). Anal. Calcd for $C_{54}H_{86}O_{24} \cdot 2H_{2}O : C$, 56.23; H, 7.87. Found: C, 56.51; H, 7.82. IR $\nu_{\rm max}^{\rm max}$ cm⁻¹: 3410 (br), 1748, 1639 (w), 1068 (br). CD (c=8.17×10⁻⁴, MeOH, 22°C): $[\theta]_{252}$ 0, $[\theta]_{225}$ –8600 (neg. max.), $[\theta]_{207}$ 0, $[\theta]_{202}$ +59700 (pos. max.). ¹³C NMR: Table I.

Methylation of DS-HL-A (7) followed by Methanolysis—A solution of 7 (140 mg) in DMSO (3 ml) was treated with a dimsyl carbanion–DMSO solution (8.2 ml) (prepared from 1 g of NaH and 17.5 ml of DMSO) and the whole was kept stirring under a nitrogen atmosphere at 18° C for 1 h. The reaction mixture was then treated with CH₃I (3.6 ml) under ice-cooling and was kept stirring at 18° C in the dark under a nitrogen atmosphere for a further 3 h. The mixture was poured into ice-water and the whole was extracted with AcOEt four times (80 ml each). The AcOEt extract was separated, washed with sat. aq. Na₂S₂O₃ and worked

up in the usual manner. The product, obtained by evaporation of the solvent under reduced pressure, was purified by column chromatography (SiO₂ 10 g, benzene-acetone=15:1) to furnish the trideca-O-methyl derivative (7a). 7a, amorphous, $^{15)}$ [α] $_{b}^{17}$ -13.0° (c=0.2, MeOH). IR $r_{max}^{COI_{1}}$ cm⁻¹: no OH, 1766, 1642 (w), 1086 (br). CD (c=7.87×10⁻⁴, MeOH, 22.5°C): [θ] $_{250}$ 0, [θ] $_{226}$ -7900 (neg. max.), [θ] $_{219}$ 0, [θ] $_{202}$ +74000 (pos. max.). ¹H NMR (90 MHz, CDCl₃, δ): 4.19, 4.27, 4.54, 4.57 (1H each, all d, J=7 Hz, anom. H×4). ¹⁶)

A solution of 7a (5 mg) in 2.5 n HCl-MeOH (2 ml) was heated under reflux for 30 min. After cooling, the mixture was neutralized with Ag_2CO_3 and removal of the solvent from the filtrate with a stream of nitrogen gave a residue which was analyzed by GLC (column: 15% NPGS, 3 mm × 2 m, temp. 170°C, N_2 30 ml/min, for I, II, and III; column: 15% PEGS, 3 mm × 1 m, temp. 140°C, N_2 30 ml/min, for IV) and TLC (benzene-acetone=3:1). The products were identified as methyl 2,3-di-O-methylquinovopyranoside (I) (t_R 4'30", 5'38"; Rf 0.60, 0.70), methyl 2,3,4,6-tetra-O-methylglucopyranoside (II) (t_R 4'52", 6'28"; Rf 0.50, 0.67), methyl 2,4,6-tri-O-methylglucopyranoside (III) (t_R 12'18", 17'15"; Rf 0.21, 0.27), and methyl 3,4-di-O-methylxylopyranoside (IV) (t_R 5'31", 7'08"; Rf 0.24, 0.26).

Methylation of Holothurin A (8) followed by Methanolysis——A solution of 8 (200 mg) in DMSO (3 ml) was treated with a dimsyl carbanion–DMSO solution (15 ml) (prepared from 1 g of NaH and 17.5 ml of DMSO) and the whole mixture was kept stirring at 15°C under a nitrogen atmosphere for 1 h. Under ice-cooling, the mixture was treated with CH₃I (7 ml) and the whole mixture was kept stirring at 15°C in the dark under a nitrogen atmosphere for 3 h. The reaction mixture was poured into ice-water (200 ml) and extracted with *n*-BuOH five times (50 ml each). Work-up of the *n*-BuOH extract in the usual manner followed by removal of the solvent under reduced pressure gave a product which was purified by column chromatography (SiO₂ 60 g, CHCl₃-MeOH-H₂O=12:3:1, lower phase) to furnish the dodeca-O-methyl derivative (8a, 101 mg). 8a, amorphous, ¹⁵⁾ [α]₀ = 11.7° (c=0.29, MeOH). IR $\nu_{max}^{\text{CHCl}_3}$ cm⁻¹: 3450 (w), ¹⁷⁾ 1757, 1644 (w), 1090 (br); 1238, 823 (sulfate). CD (c=8.97×10⁻³, MeOH, 22.5°C): [θ]₂₅₆ 0, [θ]₂₂₆ -7200 (neg. max.), [θ]₂₁₈ 0, [θ]₂₀₀ +51300 (pos. max.). ¹H NMR (90 MHz, CDCl₃, δ): 4.22—4.73 (4H, anom. H×4). ¹⁶⁾

Methanolysis of 8a (5 mg) with 2.5 n HCl-MeOH (2 ml) was carried out for 40 min as described for 7a. The product was analyzed by GLC (column: 15% PEGS, 3 mm \times 1 m, temp. 170°C, N₂ 30 ml/min) and TLC (benzene-acetone=3:1). The products were identified as I (t_R 1'29", 1'55"; Rf 0.61, 0.69), II (t_R 1'23", 1'50"; Rf 0.51, 0.67), III (t_R 4'27", 6'33"; Rf 0.21, 0.27), and methyl 3-O-methylxylopyranoside (V) (t_R 5'56", 9'03"; Rf 0.11).

Acknowledgement The authors are grateful to Prof. T. Matsuno of Kyoto College of Pharmacy for a generous gift of authentic holothurin A. They are also indebted to Tanabe Pharm. Co. for supplying crude naringinase and to Dainippon Pharm. Co. for elemental analyses.

References and Notes

- 1) Part VII: I. Kitagawa, T. Nishino, M. Kobayashi, T. Matsuno, H. Akutsu, and Y. Kyogoku, Chem. Pharm. Bull., 29, 1492 (1981).
- 2) Preliminary report: I. Kitagawa, T. Nishino, and Y. Kyogoku, Tetrahedron Lett., 1979, 1419.
- 3) a) D.P. Burma, Anal. Chim. Acta, 9, 513 (1953); b) J.J. Schneider and M.L. Lewbart, J. Biol. Chem., 222, 787 (1956).
- 4) J.R. Turvey, Adv. Carbohyd. Chem., 20, 183 (1965).
- 5) I. Kitagawa, H. Yamanaka, M. Kobayashi, T. Nishino, I. Yoshioka, and T. Sugawara, *Chem. Pharm. Bull.*, 26, 3722 (1978), and references cited therein.
- 6) a) R.U. Lemieux and S. Koto, Tetrahedron, 30, 1933 (1974); b) N. Yamaoka, T. Usui, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seo, Tetrahedron Lett., 1971, 2047.
- 7) A. Okano, K. Hoji, T. Miki, and K. Miyatake, Chem. Pharm. Bull., 5, 165 (1957).
- 8) I. Kitagawa and M. Kobayashi, Chem. Pharm. Bull., 26, 1864 (1978).
- 9) a) I. Kitagawa, M. Kobayashi, and T. Sugawara, Chem. Pharm. Bull., 26, 1852 (1978); b) J. McKenna and J.K. Norymberski, J. Chem. Soc., 1957, 3889.
- a) A. Neszmelyi, K. Tori, and G. Luckacs, J. Chem. Soc. Chem. Commun., 1977, 613;
 b) S. Yahara, R. Kasai, and O. Tanaka, Chem. Pharm. Bull., 25, 2041 (1977).
- 11) a) J.D. Chanley and C. Rossi, *Tetrahedron*, 25, 1911 (1969); b) S.L. Friess, J.D. Chanley, W.V. Hudak, and H.B. Weems, *Toxicon*, 8, 211 (1970).
- 12) T. Yasumoto, K. Nakamura, and T. Hashimoto, Agric. Biol. Chem., 31, 7 (1967).
- 13) I. Kitagawa, M. Kobayashi, T. Nishino, and Y. Kyogoku, Abstract Paper, The 100th Annual Meeting of the Pharmaceutical Society of Japan, Tokyo, April 1980, p. 182.
- 14) T_1 values in parentheses are apparent ones for the nuclei whose signals could not be obtained separately.
- 15) Although satisfactory analytical values could not be obtained, these methyl ethers were subsequently subjected to methanolysis after confirmation of their purities by TLC.
- 16) The number of methoxyls of these methyl ethers could not be confirmed by measuring their ¹H NMR signal intensities due to overlapping by other signals.
- 17) Probably due to hygroscopicity of the methyl ether.