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Abstract: Two bis-C-aminoglycosyl arenes containing the an-
golosamine and the vancosamine moieties, which are potentially
useful as the D-ring fragments of the pluramycin-type antibiotics,
were efficiently synthesized by the O→C-glycoside rearrangement
based strategy.

Key words: natural product synthesis, pluramycin-type antibiotics,
amino sugar, bis-C-glycoside, O→C-glycoside rearrangement

The pluramycins are a family of antibiotics featured by
4H-anthra[1,2-b]pyran-4,7,12-trione chromophore with
two amino sugars attached through the C-glycosidic link-
ages (Figure 1).1 These compounds exhibit potent antitu-
mor activity by DNA alkylation, where the two proximal
amino sugars, D-angolosamine and N,N-dimethyl-L-van-
cosamine, play a key role in sequence recognition in inter-
calation of the tetracyclic chromophore.2 Although such
biochemical significance as well as the unique structure
has made them attractive synthetic targets, no total syn-
thesis has been recorded thus far.3

In our efforts toward the synthesis of these natural prod-
ucts, we previously reported an effective method for con-

structing bis-C-glycosyl arene structure by performing the
O→C-glycoside rearrangement twice on a resorcinol de-
rivative (Scheme 1).4 Thus, the next questions to be ad-
dressed were, (1) whether the method would be adapted to
the amino sugar system, and (2) whether the two phenolic
hydroxy groups in the resulting bis-C-glycosyl arene
could be managed to discriminate for the following trans-
formations. Herein, we report that experimentation an-
swered in the affirmative to these questions, thereby
allowing the synthesis of bis-C-aminoglycosides 1 and 2.
They represent the first case of bis-C-glycosyl arenes fur-
nished with both the angolosamine and the vancosamine
moieties. Furthermore armed with the clues to the con-
struction of the polycyclic skeleton, compounds 1 and 2
will serve as the useful D-ring fragments for the pluramy-
cin synthesis.

The synthesis of bis-C-glycoside 1 commenced with the
C-glycosylation of monoprotected resorcylic ester 3.5 An
extensive survey of the reaction conditions by employing
glycosyl acetates 46 and 67 as the vancosamine and the an-
golosamine donors, respectively, proved that the reaction
with 4 cleanly proceeded with Sc(OTf)3 (20 mol%) and
Drierite in dichloroethane4 to afford b-C-glycoside 5 as
the sole product in 88% yield (Scheme 2).8 Predominant
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formation of the b-isomer is ascribable to the thermody-
namic preference, since the possible a-isomer would suf-
fer from significant steric repulsion between the C(6)
methyl and the C(3) amide given the 4C1 conformation
dictated by the strong tendency of the C(1) aryl moiety to
occupy the equatorial position.9

The reaction of 3 with angolosaminyl acetate 6 also led to
the desired b-C-glycoside 7 in good yield under the simi-
lar conditions, but along with many by-products
(Scheme 3). Among such by-products, the major one was
identified as the two-fold arylation product 8 (24%), pre-
sumably arising from Lewis acid promoted ring opening
of 7 to generate the quinone methide like intermediate 9
followed by further attack of 3.10

Fortunately, however, angolosaminyl acetate 6 worked
nicely in the installation of the second sugar moiety
(Scheme 4). After removal of the allyl group from mono-
C-glycoside 5,11 the resulting diol 10 was smoothly C-gly-
cosylated with angolosaminyl acetate 6 (1.3 equiv) under
the conditions involving Sc(OTf)3 and Drierite to afford
bis-C-glycoside 11 in 97% yield with no trace of the two-
fold arylation. This result implied that the susceptibility of
the angolosamine moiety to the two-fold arylation was re-
duced in 11 by the co-existing C-glycoside moiety [see

the reaction of 3 with 6 (Scheme 3), where the an-
golosamine moiety in the mono-C-glycoside 7 suffered
the two-fold arylation].12

Conversion of bis-C-glycoside 11 into the target interme-
diate 1 was fairly effective, even if not very straightfor-
ward (Scheme 5). Since it was apparent that the two
hydroxy groups in 11 were similar in their reactivity, we
once protected both with tert-butyldiphenylsilyl groups,
and examined monodesilylation of the resulting bissilyl
ether. Fortunately, use of Bu4NF under the controlled con-
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ditions afforded a mixture of the monosilyl ethers, 12 and
13, in high yield, which were easily separable by silica gel
chromatography.13 Each isomer converged into triflate 14
in high overall yield through the three-step sequence in-
cluding triflation (PhNTf2, K2CO3, acetone),14 desilyla-
tion (Bu4NF, THF), and methyl ether formation
[(MeO)2SO2, K2CO3, acetone], in this order (for the iso-
mer 12) or the reverse order (for the isomer 13). Finally,
triflate 14, upon reaction with trimethylboroxine under the
Pd(0)-catalyzed conditions,15 led to the desired bis-C-gly-
cosylated o-toluate 1 in 89% yield.

Providing that the Staunton–Weinreb annulation16 [i.e.,
the condensation of o-toluate-derived benzylic anion with
Michael acceptors (Scheme 6)] tolerates the sugar moi-
eties as the substituents, bis-C-glycoside 1 would be
promising as the intermediate toward the construction of
the polycyclic framework of the pluramycins.

ortho-Iodophenyl triflate 2, the other target intermediate
of ours, was synthesized in a similar way starting from
monoprotected 2-iodoresorcinol 1517 (Scheme 7). In this
synthesis, the order of the amino sugar installation did not
make considerable difference to its efficiency. Both of the
glycosyl donors worked nicely under the conditions em-

ploying Sc(OTf)3 and Drierite in the first C-glycosylation
of 15 and also in the second C-glycoside formation after
desilylation.18,19 Conversion of diol 18 to o-iodo triflate 2
was accomplished by utilizing again the bissilylation–
monodesilylation sequence in high  overall yield
(Scheme 8).13

Compound 2, thus obtained, could serve as the precursor
of benzyne 23, thereby allowing application to various cy-
cloaddition reactions.20

In summary, the bis-C-glycoside synthesis based on the
O→C-glycoside rearrangement was successfully applied
to the amino sugar system to allow efficient access to the
bis-C-aminoglycosides 1 and 2, which contain the an-
golosamine and the vancosamine moieties and also the
key clues to further elaboration of the aromatic ring. Fur-
ther studies toward the total synthesis of the pluramycins
are now underway in this laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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19: R = TBDPS
20: R = H
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