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Abstract: The one-pot synthesis of 1H-inden-1-one from 1-(2-bro-
moaryl)prop-2-en-1-ol was described. The reaction involved a se-
quential intramolecular Heck reaction followed by an aerial
oxidation of allylic alcohol.
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The palladium-catalyzed vinylic substitution reaction
(Heck reaction) enjoys considerable popularity as a reli-
able and general method for carbon–carbon bond forma-
tion.1 It has been widely applied as a strategy to the
synthesis of complex natural products.2 In the past de-
cades, the scope of the reaction has been extended to
many substrates including vinyl iodides, vinyl bromides
and enol triflates. Moreover, the intramolecular variants
have also become one of most important reactions in the
construction of optically active polycyclic skeletons.3

We were interested in constructing multiple chiral centers
in one step using intramolecular Heck reaction. Initially, a
substrate 14 possessing both an aryl bromide and an allylic
alcohol moiety was selected in our study. However, an un-
anticipated result was obtained when we tried the reac-
tion. Hence, when compound 1 was treated with catalytic
amount of Pd(OAc)2 in the presence of air, an oxidation
product, 1H-inden-1-one 2 was obtained exclusively
(Scheme 1).4,5 This process was believed to involve firstly
the Heck reaction followed by aerial oxidation of allylic
alcohol. This unexpected result prompted us to further
investigate the scope and general applicability of this
reaction.

Upon further examination, we found that the reaction did
not proceed under argon atmosphere (Table 1, entry 1).
However, if argon was replaced by air, the indenone 2 was
produced exclusively in moderate yield (Table 1, entry 2).
A few experiments were performed to examine the effect
of each key reagent on the yield. Finally, we found that
DMF was the best solvent and K2CO3 was the best base to
effect the reaction. The optimal reaction conditions were
found to be at 80 °C for 24 hours using 5 mol% of
Pd(OAc)2 and 15 mol% of PPh3.

Scheme 2

Table 1 Optimization of Reaction Conditions

Entry Base Solvent Yield (%)a

1 K2CO3 Toluene 0b

2 K2CO3 Toluene 44

3 K2CO3 MeCN 30

4 K2CO3 DMF 62

5 i-Pr2NEt DMF 36

6 Et3N DMF 55

a Isolated yield.
b Reaction was run under argon atmosphere.
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To explore the generality of this reaction, other substrates
were prepared and employed in this study under the opti-
mal reaction conditions (Scheme 2).6 The results are
shown in Table 2. Interestingly, both electron-donating
and electron-withdrawing substituents (R1 and R2) are
tolerated under the reaction conditions, and the product
yields were about 34% to 64%. In addition to aryl sub-
stituents, alkyl group was also employed in our study
(entry 9), and the yield was also satisfactory (69%).7

To reveal the reaction mechanism, additional substrates
5–7 were prepared (Figure 1). No reaction happened
when compound 5 or 6 was employed. On the other hand,
compound 7 was smoothly converted into compound 2
under the optimal reaction conditions. The results sug-
gested that the benzylic hydroxyl group played an impor-
tant role in the reaction. Based on our knowledge and
those reported in the literature,3,8 a plausible mechanism
was proposed (Scheme 3). The reaction first involved the
reduction of the Pd(II) to the active palladium(0) species,
followed by oxidative addition of the aryl bromide to
palladium(II). Insertion into the carbon–carbon double

bond then produce an organopalladium intermediate
which then undergo b-hydride elimination to form the
indenol and a palladium(II) salt which can be reduced
back to palladium(0). Finally, indenol was oxidated to
indenone by air.

Figure 1

Br

O
H3CO

OCH3

OCH3

OCH3

OCH3

Br

OCH3

H3CO

OCH3

OCH3

OCH3

OCH3

OH
H3CO

OCH3

OCH3

OCH3

H3CO

5 6

7

Table 2 One-Pot Synthesis of 1H-Inden-1-one from Compound 3

Entry R1 R2 R3 Yield of 4 (%)a

1 4-MeOC6H4 3,5-(MeO)2C6H3 3,5-Dimethoxy 62 (2)

2 C6H5 C6H5 H 55 (4a)

3 H 4-MeOC6H4 H 34 (4b)

4 4-MeOC6H4 C6H5 H 60 (4c)

5 C6H5 4-MeOC6H4 H 64 (4d)

6 C6H5 4-NO2C6H4 H 61 (4e)

7 H C6H5 3,5-Dimethoxy 52 (4f)

8 4-MeOC6H4 4-NO2C6H4 H 38 (4g)

9 n-C3H7 4-MeOC6H4 3,5-Dimethoxy 69 (4h)

a All products were characterized by 1H NMR, 13C NMR, and MS.

Scheme 3
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In summary, a novel approach to construct 1H-inden-1-
one was described. The indenone/indanone skeleton is a
fairly common benzannulated motif in many natural
products.9 Because of their exciting pharmacological
properties, e.g., cytotoxic,10,11 anti-HIV,11 and antibacteri-
al activies,12 much attention has been paid to the synthesis
of these molecules and several synthetic methods have
been developed to construct their skeleton.13 Further
applications of this methodology in natural product syn-
thesis are being pursued in our laboratory.
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