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Metalloporphyrin receptors for histidine-containing peptides
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A B S T R A C T

Two new ditopic metalloporphyrin receptors constructed by combining metalloporphyrin with crown

ethers have been prepared and characterized. 1H NMR and MS spectra confirmed the complexation of

receptor with peptide driven by coordination interaction and hydrogen bonding. UV/vis experiments

revealed that the receptors exhibited high binding affinity to histidine-containing peptides. These

receptors could differentiate short peptides of C-terminal histidine and N-terminal histidine and formed

the most stable complexes with tripeptide.

� 2014 Hui Liu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Contents lists available at ScienceDirect

Chinese Chemical Letters

jo u rn al h om epag e: ww w.els evier .c o m/lo cat e/cc le t
1. Introduction

Selective recognition of short peptides by synthetic receptors
has attracted a great deal of interest in past decade because of their
important roles in nature [1–5]. The intrinsic properties of short
peptides originated from flexible conformation and irregular
topology placed a number of challenges in the design of receptors
[6]. In the recently reported examples, one strategy has been
proved to be effective for selective recognition of peptides, this is,
the binding of peptide N terminus and side chain of peptide in
ditopic fashion [7–10].

Crown ethers are ideal binding units for ammonium ions in
amino acids [11–14]. On the other hand, metalloporphyrins have
been documented to coordinate the nitrogen atom of imidazole
[15–18]. Porphyrin platform can further provide a large molecular
surface for dispersive interaction with peptide backbone [19–21].
In this context, the aim of this letter is to develop new receptors by
combining crown ethers with metalloporphyrin and to investigate
their recognition behavior toward histidine-containing short
peptides.

The strapped porphyrin developed by our group was served as a
scaffold to align peptide backbone in one direction from the N to C
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terminus [22,23]. The metal cation Zn(II) in the center of porphyrin
could provide additional coordination site to bind nitrogen atom of
histidine. Aza-crown ethers of varied size were incorporated to
porphyrin via amide linkage as recognition site of ammonium ion,
which allowed the receptor preorganized as the distance between
N terminus and side chain of peptides (Scheme 1).

2. Experimental

NMR spectra were recorded on a Varian spectrometer operating
at 300 and 400 MHz for 1H and 13C respectively in the indicated
solvents. Chemical shifts were expressed in parts per million (d)
using residual solvent protons as internal standards. MALDI-TOF
mass spectra were recorded on a Voyager-DE STR mass spectrom-
eter (AB SCIEX, USA). UV/vis absorption spectra were measured
with a Cary 100 UV/vis spectrophotometer (Varian, USA).
Elemental analysis was carried out at the SIOC analytical center.
Unless otherwise indicated, all starting materials were obtained
from commercial suppliers and were used without further
purification. All solvents were dried before use following standard
procedures. All reactions were performed under an atmosphere of
dry nitrogen. Compound 5 was prepared following our previous
method [24,25]. Column chromatography was carried out using
silica gel (300–400 mesh). All of the modified peptides were
prepared following standard procedures in the solution (see
Supporting information).
f Chinese Chemical Society. All rights reserved.
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Scheme 1. Metalloporphyrin receptors and modified peptides.

Fig. 1. Partial 1H NMR spectra (300 MHz) in CD3OD/CDCl3 (1/1) at 25 8C: (a)

Receptor 1; (b) Receptor 1 + 5 equiv. HisN8; (c) HisN8.
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The UV/vis titration experiments were performed according to
the following procedure. A solution of receptor (2.0 mL,
1.1 � 10�6 mol/L) in chloroform was titrated with 10 mL of
histidine-containing peptide (2.0 � 10�5 mol/L to 5.0 � 10�5 mol/
L in chloroform, adjusted with 10 fold HCl). After each addition the
solution was allowed to equilibrate for 5 min and the absorption
intensity was recorded in the wavelength region of 350–600 nm at
25 8C.

2.1. General procedure for the synthesis of metalloporphyrin receptors

To a solution of porphyrin acid 5 in dichloromethane oxalyl
chloride and several drops of DMF were added. The mixture was
stirred at room temperature for 5 h. After evaporating the solvents
under vacuum, the residue was dissolved in dichloromethane and
then aza-crown ether and triethyl amine were added and stirred
overnight at room temperature. After removal of solvent, the
resulting residue was purified by column chromatography to afford
aza-crown ether porphyrin. The free base porphyrin was dissolved in
dichloromethane/methanol (3:1) and zinc acetate was added with
stirring. The mixture was stirred under reflux overnight. The solvent
was removed in vacuo and the resulting residue was subjected to
column chromatography to afford metalloporphyrin receptor as a
purple solid in high yield (Scheme 2).

Compound 1: Purple solid (68%). Mp > 250 8C. 1H NMR (300 MHz,
CDCl3):d �1.39 (m, 2H), �1.21 (m, 2H), �1.00 (m, 2H), �0.80 (m, 2H),
�0.60 (br, 4H), 0.65 (br, 4H), 0.90 (t, 6H), 1.25–1.56 (m, 20H), 1.89 (p,
4H), 3.35–3.86 (m, 20H), 4.49 (t, 4H, J = 6.75 Hz), 7.28 (m, 2H), 7.46
(d-t, 1H, J = 0.9, 7.5 Hz), 7.76 (d-t, 1H, J = 1.8, 5.1 Hz), 7.86 (d-d, 1H,
J = 2.25, 8.55 Hz), 8.19 (d-d, 2H, J = 1.05, 7.95 Hz), 8.32 (d-d, 1H,
J = 7.5, 1.8 Hz), 8.37–8.48 (m, 7H), 8.81 (m, 8H). 13C NMR (100 MHz,
CDCl3): d 14.1, 22.7, 25.1, 26.1, 27.7, 28.3, 28.9, 29.1, 29.3, 29.4, 31.9,
65.5, 70.1, 112.9, 113.8, 116.4, 117.8, 119.5, 120.0, 127.7, 128.0,
129.1, 129.6, 129.8, 131.6, 131.7, 131.9, 132.2, 132.8, 134.4, 134.7,
147.7, 149.5, 150.4, 150.7, 159.8, 160.6, 167.0, 172.0, 172.3. MS
(MALDI-TOF) (m/z): 1407 (M+H+). Anal. Calcd. for C83H97N5O11Zn: C,
70.90; H, 6.95; N, 4.98. Found: C, 70.39; H, 7.04; N, 4.91.

Compound 2: Purple solid (71%). Mp > 250 8C. 1H NMR
(300 MHz, CDCl3): d �1.39 (br, 2H), �1.26 (br, 2H), �1.00
Scheme 2. Synthetic route of metal
(br, 2H), �0.85 (br, 2H), �0.69 (br, 4H), 0.61 (br, 4H), 0.90 (t,
6H), 1.25–1.55 (m, 20H), 1.88 (p, 4H), 2.29–3.06 (m, 20H), 3.67 (m,
4H), 4.42 (t, 4H, J = 6.75 Hz), 7.09 (d, 1H, J = 9.0 Hz), 7.29 (s, 1H),
7.46 (t, 1H, J = 7.5 Hz), 7.56 (d, 1H, J = 5.4 Hz), 7.76 (t, 1H, J = 5.1 Hz),
7.99 (s, 1H), 8.22–8.45 (m, 9H), 8.75–8.88 (m, 8H). 13C-NMR
(100 MHz, CDCl3): d 14.1, 22.7, 25.1, 26.2, 29.1, 29.3, 29.4, 29.7,
31.9, 65.4, 70.4, 112.8, 113.8, 116.3, 117.7, 119.4, 119.9, 127.6,
128.9, 129.5, 129.8, 131.4, 131.6, 131.8, 132.1, 134.3, 134.7, 147.8,
149.5, 150.5, 150.9, 159.8, 160.5, 167.0, 171.8, 172.0. MS (MALDI-
TOF) (m/z): 1451 (M+H+). Anal. Calcd. for C85H101N5O12Zn: C,
70.40; H, 7.02; N, 4.83. Found: C, 70.61; H, 7.02; N, 4.64.

3. Results and discussion

To investigate the binding modes of the metalloporphyrin
receptor and the histidine-containing peptides, 1H NMR experi-
ments were firstly carried out. When 5 equiv. of HisN8 was added
to a solution of metalloporphyrin 1 or 2 in CD3OD/CDCl3 (1/1), the
signals of the protons of the imidazole group shifted upfield (ca.

0.17 ppm) as a result of the coordination interaction between the
imidazole nitrogen atom and the zinc cation (Fig. 1). The strong
loporphyrin receptors 1 and 2.



Fig. 2. MALDI-TOF mass spectra of 1�GlyHisN8 complex.

Fig. 3. Absorption spectral changes of 2 (1.1 � 10�6 mol/L) upon addition of

HisGlyN8 (1.0 � 10�7–7.0 � 10�6 mol/L) in chloroform at 25 8C.

Table 1
Binding constants (L/mol) and the associated free energy change (kcal/mol) of

peptides with receptors 1 and 2.

Peptide 1 2

Binding constant DG Binding constant DG

HisN8 1.1 � 105 �6.9 1.2 � 105 �7.0

HisGlyN8 1.9 � 105 �7.2 2.5 � 105 �7.4

GlyHisN8 4.4 � 105 �7.7 5.5 � 105 �7.9

GlyGlyHisN8 5.2 � 105 �7.8 7.8 � 105 �8.0

a Values are the average of two separate measurements and with error of �15%.
b Obtained in chloroform.
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upfield shifts were also observed when other histidine-containing
peptides were used (Figs. S1–S3 in Supporting information),
indicating the placement of the peptide within the ring current of
metalloporphyrin. Due to the overlapping of signals in the region of
3.0–4.0 ppm, the changes of the protons of the crown ether were
hardly estimated. However, the binding strength between crown
ether and ammonium ions should be much weaker than that of
Zn2+ and imidazole according to previous studies [26–28].
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Fig. 4. Proposed structures of the complexe
Following the NMR study, mass spectrometry was used to
probe the non-covalent interactions between the metallopor-
phyrin receptors and the histidine-containing peptides. The
formation of a stable complex from receptor 1 and GlyHisN8
driven by coordination interaction and hydrogen bonding was
confirmed by MALDI-TOF analysis (Fig. 2). It gave a peak at m/z
1785.1, which corresponded to 1:1 complex of 1 and GlyHisN8,
although the intensity was weak.

The binding constants were determined by UV/vis titration
experiments in chloroform. Both receptors 1 and 2 showed the
maximum absorption at the wavelength of 421 nm. Upon the
addition of a histidine-containing peptide to a solution of receptor
1 or 2, a pronounced decrease in the absorption for all those
peptides was observed. No significant shift was observed for
receptors 1 and 2 when a modified histidine (HisN8) was added to
their solutions. Upon addition of dipeptide (HisGlyN8 or GlyHisN8)
two clear isosbestic points appeared at 432 and 559 nm,
respectively. Furthermore, the addition of tripeptide (GlyGly-
HisN8) also resulted in a significant bathochromic shift (ca. 12 nm
and 10 nm) (Fig. 3 and Figs. S4 and S5 in Supporting information).

On the basis of the absorption data obtained at 421 nm, binding
constants were calculated using a 1:1 binding model [29]. The
results are summarized in Table 1, which reveals that those
histidine-containing peptides bind well to the metalloporphyrins.
In contrast to receptor 1, receptor 2 shows slightly higher binding
affinity to all the four peptides. It can be attributed to a higher
binding ability of aza-18-crown-6 toward ammonium ion than
that of aza-15-crown-5 [30].

Receptors 1 and 2 could differentiate short peptides with C-
terminal histidine and N-terminal histidine. For example, recep-
tors exhibited higher binding affinity toward GlyHisN8 than
HisGlyN8. It might be attributed to a more matched spatial
distance between ammonium ion and imidazole group in
GlyHisN8. It was also noteworthy that the binding energy
increased with the increasing length of the peptides, which was
attributed to the dispersive interaction of the amide groups with
the porphyrin unit. Receptors 1 and 2 bound best to tripeptide
GlyGlyHisN8, which bears three amide oxygen atoms with
2-GlyHisN8
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negative charge of high polarizibility. Based on these results and
the previous reports, it was proposed that complexes formed by
the binding of receptors and peptides in the following modes
(Fig. 4).

4. Conclusion

In summary, the combination of a strapped metalloporphyrin
with aza-crown ethers resutled in two new synthetic receptors.
They exihibited high binding affinity to histidine-containing short
peptides and showed higher binding affinity to C-terminal
histidine than to N-terminal histidine. As a consequece of additive
dispersive interaction of the amide group with porphyrin, both
receptors formed the most stable complex with tripeptide. In
addition, the binding affinity of receptor 2 to the histidine-
containing peptides was slightly higher than 1, which could be
attributed to the stronger binding of ammonium ion by the aza
crown ethers of larger ring size in receptor 2. Current efforts are
focusing on exploring selective recognition of short peptide in
aqueous media by modifying the metalloporphyrin receptors.
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