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Abstract

The sustainable synthesis of highly functionalisEmylcarboxamide compounds with
biological relevance is reported through a seqakrsgiminocarbonylation/hydroformylation
approach. The optimisation of palladium-catalysechinacarbonylation of iodoaromatic
substrates, using allylamine as nucleophile was fierformed, with molybdenum hexacarbonyl
as alternative CO sourceersus gaseous carbon monoxide. The combination of miavew
irradiation with molybdenum hexacarbonyl alloweds#&dectively prepare a setdfheterocyclic-
based allylcarboxamides. Subsequent rhodium-ca@lyshydroformylation of the
allylcarboxamide intermediates led to the preparabf new pyridine, pyrazoline and chalcone

derivatives containing both carboxamide and formgieties.
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1. Introduction

Carbonyl compounds, such as carboxamides and aldshpre among the most relevant
synthons for preparation of highly functionalisecdbletules with potential applications in
medicinal chemistry [1-6]. Particularly, those ainingN-heterocycles [7-14] and chalcone [15-
17] cores are frequently present in important pla@otogical entities, such as antibiotics,

antibacterial, anti-hypertensive, anti-inflammatand anticancer drugs (Figure 1).
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Figure 1. Examples oN-heterocyclic and chalcone-based carbonyl compouuitis

pharmacological activity.

Therefore, there has been an increasing interetsteirsearch for efficient and sustainable
chemical processes for preparing such moleculesorymthem, transition metal catalysed
hydroformylation [18-25] and aminocarbonylation {28] reactions are two paradigmatic
examples of efficient one-pot and versatile symthejpproaches to get access to carbonyl
compounds, such as aldehydes and carboxylic acidatiges. Regarding these topics, it should
be highlighted the relevant contribution of L. Kall with more than 300 published papers [35].
Furthermore, the development of sequential carladioyl reactions have led to significant
reduction in costs, purification steps and wastenédion. Such sequential reactions present
higher atom economy, allowing to improve the gehpracesses efficiency and sustainability
[36-44]. It should be also noted that the globahdeds for implementation of more sustainable
synthetic processes have boosted the search é&natitve CO sources [45-49], including metal-
carbonyl compounds [50-53] and the developmennefgetically favourable processes, such as
microwave-assisted carbonylation reactions [54-58].

Along the last years, we have been focused onetieldpment of efficient transition-metal
catalysed carbonylation-based sequential proceggded to biologically relevant substrates for
the preparation value-added products with bioldgactivity and/or industrial interest, including

hydroformylation/arylation [59], hydroformylatiasbmerisation [60],
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hydroformylation/reductive amination [61,62], hytbomylation/Strecker [62],
hydroformylation/hydrogenation [63] and aminocangation/cyclisation [64].

As part of our continuing research in this fielé&gréin we report an original sequential
process for preparation of biologically relevantniglcarboxamide compounds comprising N-
heterocycle and chalcone scaffolds, through micvesassisted palladium-catalysed
aminocarbonylation of iodoaromatic substrates aitiflamine, followed by rhodium-catalysed
hydroformylation of the allylcarboxamide intermedis, to obtain carbonylated products

containing both formyl and carboxamide moti&lt{eme 1).

Aminocarbonylation Hydroformylation
| HzNw\' o CO/H, )oL
A — A » —— A" N
Ar Ar N/\/
[Pd] Rh/PPh H cH
. MW H 3 CHO
Mo(CO)g
Scheme 1



2. Results and discussion

The palladium-catalysed aminocarbonylation step firas optimised, using iodobenzene
(1) as a model substrate, allylamine as nucleoppd#adium (ll) acetate as catalytic precursor,
DBU as base and dioxane as solvent. The reacti@ns varried out in the presence of carbon
monoxide or molybdenum hexacarbonyl as alternafi@ carbonyl source, at 125 °C, using
either conventional heating or microwave irradiati@onversion and selectivity were determined

by GC-MS analysis of the crude mixtures and thaltesre presented in Table 1.

Table 1. Aminocarbonylation of iodobenzen®) (sing allylamine as nucleophtte.
o

(jl HN T N~
Pd(OAC),: [CO] H
1 Dioxane; DBU 2
Entr Carbonyl Heatin Time Conversion Selectivity TOF
Y source 9 (min) (%) (%) (hh)
CO
1 (3 bar) Conv. 60 79 69 32
CO MW
2 (3 bar) (150W) 5 76 62 365
3 Mo(CO)s Conv. 60 99 82 40
MW
4 Mo(CO)s asow) ° 99 76 475

a) Reaction conditions: iodobenzene (0.4 mmolylatine (0.6 mmol), Pd(OAg)(0.01 mmol),
Mo(CQO)s (0.4 mmol), DBU (0.2 mL), dioxane (3 mL), 125 °C.

Using a CO pressure of 3 bar and conventional inga#é conversion of 79% was obtained
in 60 min (TOF = 32 ), with 69% selectivity for the carboxamide prod(} (Table 1, entry
1). Under microwave irradiation (150 W), a simileonversion was obtained in just 5 min,
leading to a substantial increase in TOF (385 hlthough a slightly slower selectivity (62%)
was observed (Table 1, entry 2). Alternatively, thee of Mo(CO) complex as alternative
carbonyl source, under conventional heating, pediflill conversion in 60 min (TOF = 40')
with 82% selectivity for the carboxamid®) ((Table 1, entry 3). In addition, under microwave
irradiation, the reaction proceeded with full corsien in 5 min (TOF = 475 and with 76%
selectivity for the carboxamide produ@) (Table 1, entry 4). In sum, microwave irradiation
allowed to significantly reduce the required reamtitime from 60 min to 5 min with
enhancement of the activity (TOF = 40 and 475réspectively), maintaining the reaction

selectivity.



With optimised conditions, microwave-assisted P@lyaed aminocarbonylation reactions,
using Mo(COj as carbonyl source, were applied to different admatic substrates with
biologically relevant scaffolds, including 1-bromMeeodo benzene 3], 4-iodoanisole 4),
iodopyridine B), 7-iodoindole §), 5-iodoindole ) and iodopyrazolined) and iodochalconed)
[68]. Conversion and yields were determined by GS-dhalysis of the crude mixtures and the

results are presented in Table 2.

Table 2. Microwave-assisted Pd-catalysed aminocarbonylatging allylamine as nucleophtte.

H,N" ; DBU 0
N I Pd(OAC),; Mo(CO)s NN
R 125°C,5min
MW
Entry Substrate Product (yield, % )°
| 0
N
s T N
1 2 (76)
| 0
L N
2 Br Br H
3 10 (71)
| 0]
o) fon e
3 H,CO HyCO H
4 11 (65)
" jog e
4 CI°N ooy
5 12 (76)
A A\
N N
5 | H \/\N e
H
6 13 (87)
HC
6 N H N
H
7 14 (72)
Q Q.
N*N N A
d \
7 O H O O
| O N
8 O 1570




) (@)

A H X
s aa cIEN Sag e
9 © 16 (75)
a) Reaction conditions: substrate (0.4 mmol), allylzen{0.6 mmol), Pd(OAg)(0.01 mmol),
Mo(CQO)s (0.4 mmol), DBU (0.2 mL), dioxane (3 mL), 125 ®&min, 150 W.
b) Yield determined by GC-MS analysis of crude mixture
c) 1h.

The microwave-assisted aminocarbonylation reactmyoseeded witlta. 99% conversion
in 5 min and allylcarboxamide derivatives were ot#d as major products in all cases, in yields
ranging from 65% (for produdtl) to 87% (for produci3). In addition, the aminocarbonylation
of substrates3 and 5 led to predominant formation mono-carbonylateddpots 10 and 12,
respectively (Table 2, entries 2 and 4), which ¢atk that oxidative addition to the palladium
complex occurs mainly through the most reactive +d, while C-Br and C—Cl bonds remain
unchanged under these conditions. Moreover, incdme of iodopyrazoline8), the reaction
required 1 h, under microwave irradiation, to abtie corresponding allylcarboxamide product
(15), obtained in 70% vyield. In all cases, GC-MS iradied the formation of ketocarboxamides as
minor products (up tga. 10 %), corroborated by tHéC NMR spectra which presented typical
signals around 190 ppm. After work up and purifmaty column chromatography in silica gel,
using EtOAch-hexane or EtOAc/CHCl, mixtures as eluents, the carboxamide prod@césmd
10-16 have been isolated and fully characterised. In,somcrowave-assisted palladium-
catalysed aminocarbonylation of iodoaromatic sabes; using allylamine as a nucleophile,
allowed optimising the first step of the sequenfiedcess and provided the access to a set of
allylcarboxamide products.

In order to minimise product losses by work-up gudification procedures, a sequential
catalytic aminocarbonylation/hydroformylation medlotogy was then carried out, without work-
up or purification of the allylcarboxamide internmg@s. Thus, using iodobenzerig §s a model
substrate, the crude mixture obtained in the miex@wassisted aminocarbonylation step was
directly subjected to hydroformylation conditions 8 ( bar H/CO) with a
rhodium/triphenylphosphine catalyst, at 50 °C. Ho&re in a first attempt, no conversion was
observed after 6 h. This was attributed to the &irom of a sterically hindered rhodium/DBU

complex of typel7 [65,66], which leads to formation of catalyticaihactive species.



To overcome this issue, the crude mixture, regyfiiom the aminocarbonylation step, was
passed through a silica-pad previous to hydrofoatigh. Following this procedure, full substrate
conversion was obtained in 5 h, with 72% chemoselec for oxo-products and 44%
regioselectivity for the branched aldehyd8)((Table 3, entry 1). Then, aiming the preparatbn
biologically relevant formylcarboxamide moleculeshe scope of this sequential
aminocarbonylation/hydroformylation methodology wasxpanded to iodopyridine 5)

iodopyrazoline §) and iodochalcone) substrates.

Table 3. Synthesis of formylcarboxamides by sequential acanbonylation/hydroformylation
methodology’

i o o

|\| H,N " Q)LN/\/ Rh/PPh; _ ~ N~
7 PdiOAc, lJ H CoH, | %/ H cHo

Mo(CO)s R R

Product
(isolated yield, %)

0]
I
) of 7 " T N oo

Entry Substrate Chemo (%)°  iso-Regio (%)°

18 (21)
| o}
o s
S |
2 CI”'N 73 51 N H cHo
5 19 (20)

g N-N R

3 | 56 46 oHe 1
8
O

O 2019
0
NS 0O 64 36 A




a) Reactions conditionsaminocarbonylation step substrate (0.4 mmol), allylamine (0.6 mmol),
Pd(OAc) (0.01 mmol), Mo(CQ) (0.4 mmol), DBU (0.2 mL), dioxane (3 mL), 125 “T50 W, 5
min,; hydroformylation step: Rh(acac)(CQJPPh = 1:5; Rh/substrate = 1:100; P = 8 bafCGO;
50 °C, 5 h. Conversion was ca 99% in all cases.

b) Chemoselectivity for oxo-products (determined'HyNMR).

c) Regioselectivity for the branched aldehyi®) (determined byH NMR).

d) 12 h

In a typical sequential aminocarbonylation/hydrafglation experiment, the iodo-
substrate, allylamine, Pd(OA¢Mo(CO) and DBU were dissolved in dioxane and placed ansid
a microwave vial. The mixture was then subjectedaniorowave irradiation (P = 150 W), the
reaction proceeding at 125 °C for 5 min. After @ogldown to room temperature, the obtained
mixture was filtered through a silica pad and thsidue was introduceda cannula into an
autoclave containing the precursor, Rh(&@ac and triphenylphosphine (Bphrhe autoclave
was then pressurised with 8 bay/€lO and kept at 50 °C for 5 h (or 12 h). At the ,ehé solvent
was evaporated and the crude mixture was analyséd &nd**C NMR spectroscopy.

The sequential aminocarbonylation/hydroformylatfmocesses proceeded with complete
conversions and the chemoselectivity for oxo-prtsluzas in the range 56-73%. The
regioselectivity for the branched aldehydes vafredh 36 to 51% (Table 3, entries 2-4). Upon
purification by column chromatography in silica ,gi#le branched formylcarboxamide products
18-21 were isolated in yields ranging from 19 to 22%e3é& low yields can be explained by the
significant formation of linear aldehydes and tlespective cyclisation products (not isolated),
resultant from intramolecular condensation betwiencarboxamide and formyl moiety of the
linear aldehydes, which leads to the formation aftable 5 membered ringggheme 2) [67],
evidenced byH NMR and GC-MS.

0] 0]
-H,O
Ar)J\H/\/\gH —2> Ar)J\D

Scheme 2

It is worth mentioning that, in the case of chakaterived substrate9), the
hydroformylation of the allyl moiety occurred comeibantly with reduction of the conjugated
internal C=C double bond, which resulted in therfation of formylcarboxamid2l, obtained as

major product (Table 3, entry 4).



4. Conclusions

We have developed an innovative catalytic aminamaylation/hydroformylation sequential
approach to prepare new formylcarboxamide molecdlbee optimisation of the first step of the
catalytic sequence was achieved through microwasestgd palladium-catalysed
aminocarbonylation of iodoaromatic substrates, gisihylamine as nucleophile and Mo(GQs
alternative carbonyl source, which provided an cedfit strategy for the synthesis of
allylcarboxamide derivatives. The subsequent Rilifemylphosphine-catalysed hydroformylation
of the allylcarboxamide intermediates allowed thetisesis of a set of nelN-heterocyclic and
chalcone-based formylcarboxamides, including 6+chid-(2-methyl-3-oxopropyl)nicotinamide,
4-(1,3-diphenyl-4,5-dihydroH-pyrazol-5-yl)N-(2-methyl-3-oxopropyl)benzamide andE){N-
(2-methyl-3-oxopropyl)-4-(3-oxo0-3-phenylprop-1-enlbenzamide. In sum, this transition-
metal catalysed aminocarbonylation/hydroformylats@guential process opens new perspectives
regarding the preparation of biologically relevamblecules containing both carboxamide and

formyl motifs.

5. Experimental section
5.1. General

Manipulation of all moisture sensitive reagents wasied out under nitrogen atmosphere by
using Schlenk techniques. Glassware was dried mvan at 200 °C and cooled under a nitrogen
atmosphere. Palladium (llI) acetate, triphenylphosnhMo(CO}, iodobenzeno, 1-bromo-4-
iodobenzene, 4-methoxyiodobenzene, 2-chloro-5-igddine, 7-iodoindole, 5-iodoindole, DBU
and dioxane were purchased from Merck and used outithfurther purification. The
iodopyrazoline8 and iodochalcon® substrates were synthesised through a mechanocdiemi
synthetic methodology, recently developed by sofmes¢68].

Microwave-assisted experiments were performed ickivalled glass vials under closed-
vessel conditions, using a CEM DiscdVe3P Focused MicrowaV® Synthesis System. NMR
spectra were recorded on a Bruker Avance 400 spreter, operating at 400.13 MHz ft
NMR and 100.62 MHz fot*C NMR. Chemical shifts3] are reported in ppm relatively to CRCI
(7.260 and 77.16 ppm foH and*C, respectively) or tetramethylsilane (TMS). Higisolution
mass spectrometry analysis was carried out on &eBriicrotof apparatus, equipped with
selective ESI detector. Samples of the reactions wealysed by: a) gas chromatography carried
out on Agilent-7820A GC System equipped with a pofar capillary HP-5 column (5%
diphenyl and 95% dimethylpolysiloxane), with 30 endgth and 0.32 mm inside diameter and

using nitrogen as carrier gas, and equipped with-ih detector; or b) gas chromatography

9



coupled with mass spectrometry (GC-MS) using arlehgi7820A GC System, equipped with a
HP-5 MS column, coupled to an Agilent 5975 MSD 8gsfTechnologies spectrometer, using El
(70 eV) and helium as carrier gas. Carboxamide vdeves were analysed by gas
chromatography using the following methods: a) GD-method: injector temp 250 °C, oven:
starting temp 50 °C (hold-time 2 min), heating ra%°C mirt, final temp 280 °C (hold-time 9
min); detector temp 280 °C, carrier gas: nitrogeate{ 1.6 mL mift); b) GC-MS method:
injector temp 250 °C, oven: starting temperaturéG@hold-time 1 min), heating rate 15 °C min
! final temp 280 °C (hold-time 15 min); detectomf® 280 °C, carrier gas: helium (rate: 1 mL

min™).

5.2. Microwave-assisted palladium-catalysed aminocar bonylation

The iodoaryl substrate (0.4 mmol), allylamine (45 @.6 mmol), Pd(OAg) (2.2 mg, 0.01
mmol), Mo(CO} (105.6 mg, 0.4 mmol), DBU (180 uL, 1.2 mmol) welissolved in dioxane (3
mL) and placed into a microwave vial. The mixturaswsubjected to microwave irradiation
(Initial Power = 150 W) and the reaction was coniddcat 125 °C for 5 min. The mixture was
then cooled to room temperature, filtered througimall plug of celite and evaporated to dryness
with the crude being analysed by GC-MS and/or GO-frhethods described in section 5.1). The
residue obtained was dissolved in dichlorometh@8eniL) and washed with water (3x20 mL).
The organic phase was dried over anhydrousSNg filtered and evaporated to a solid material
or to a waxy residue. The reaction products werelaiesd and purified by column
chromatography (Silicagel 60 (Merck), 0.063-0.200m)n using EtOAat-hexane or
EtOAc/CHCI, mixtures as the eluents (specified below for eawhpound).

5.3. General procedure of sequential aminocarbonylation/hydroformylation

For the sequential aminocarbonylation/hydroformglatprocess the iodoaromatic substrate
(0.4 mmol), allylamine (45 pL, 0.6 mmol, 1.5 eqi\Rd(OAc) (2.2 mg, 0.01 mmol), Mo(C®)
(105.6 mg, 0.4 mmol), DBU (180 pL, 1.2 mmol) and»x@ine (3 mL) were placed into a
microwave vial. The mixture was subjected to micwe irradiation (Initial Power = 150 W) and
the reaction was conducted at 125 °C for 5 mineAftooled down to room temperature, the
aminocarbonylation crude mixture was filtered tlglowa small plug of silica gel and introduced
via cannula into the autoclave. The rhodium precuRoacac)(CQ) (4x10° mmol, 1.03 mg)
and triphenylphosphine (0.02 mmol, 5.24 mg) wersalved in dioxane (3 mL), under argon
atmosphere, and introduceth cannula into the autoclave. After purging the eystvith three

cycles of vacuungingas the reactor was pressurised with 8 bar gf0® (1:1) and kept at 50 °C.

10



After 5 h, the reactor was cooled to room tempeeaind slowly depressurised. The reaction
mixture was evaporated to dryness analysedtbNMR spectroscopy. The reaction products
were isolated and purified by column chromatograffilicagel 60 (Merck), 0.063-0.200 mm),

using EtOAch-hexane or EtOAc/CHCl, mixtures as the eluents (specified below for each

compound).

5.4.1 Characterisation of products

The spectroscopic data 210 and11 are in agreement with that previously reported1691].

N-allyl-6-chloronicotinamid€12)

Rf (CH,CIl./EtOAc 1:1) = 0.74. Beige solid, Yield 23%, 18 nfg0@ mmol).*H RMN (400 MHz,
CDCls, ppm):& 8.75 (d,J = 7.6 Hz, 1H), 8.10 (ddl = 8.3, 2.5 Hz, 1H), 7.43 (d,= 8.3 Hz, 1H),
6.18 (s, 1H), 5.97 — 5.90 (m, 1H), 5.28 (dd; 17.1, 1.2 Hz, 1H), 5.23 (dd= 10.2, 0.9 Hz, 1H),
4.12 — 4.08 (m, 2H)"C RMN (100 MHz, CDQ, ppm): & 164.5; 154.5; 148.0; 138.1; 133.6;
129.2; 124.6; 117.6; 42.8. HRMS (EStVE): found 197.0477 [M+H] (calcd. 197.0476).

N-allyl-1H-indole-7-carboxamid€l3)

Rf (EtOAch-hex 1:4) = 0.37. White solid. Yield 20%, 16 mgo@® mmol).'H RMN (400 MHz,
CDCls, ppm):6 10.32 (br s, 1H), 7.81 (d,= 7.8 Hz, 1H), 7.38 (d) = 7.4 Hz, 1H), 7.33 — 7.32
(m, 1H), 7.12 (tJ = 7.7 Hz, 1H), 6.58 — 6.57 (m, 1H), 6.47 (s, 16/P1 — 5.94 (m, 1H), 5.30 (dd,
J=17.2, 1.4 Hz, 1H), 5.21 (dd,= 10.2, 1.3 Hz, 1H), 4.16 — 4.13 (m, 2)C RMN (100 MHz,
CDCl3, ppm):6 167.8; 135.6; 134.4; 129.7; 125.8; 125.0; 1181%.8; 116.8; 115.9; 102.1; 42.2.
HRMS (ESI) (W2): found 201.1023 [M+H] (calcd. 201.1022).

N-allyl-1H-indole-5-carboxamid€l4)

Rf (CH.CI,/EtOAc 2:1) = 0.51. White solid. Yield 23%, 18 m@.q9 mmol).'H RMN (400
MHz, CDCk, ppm):6 8.53 (br s, 1H), 8.11 (s, 1H), 7.66 (dd; 8.5, 1.5 Hz, 1H), 7.42 (4,= 8.5
Hz, 1H), 7.28 — 7.26 (m, 1H), 6.62 (s, 1H), 6.28 ¢b1H), 6.01 — 5.94 (m, 1H), 5.29 (dHF
17.1, 1.5 Hz, 1H), 5.19 (dd, = 10.2, 1.3 Hz, 1H), 4.14 — 4.12 (m, 2HJC RMN (100 MHz,
CDCl3, ppm):6 168.6; 137.7; 134.7; 127.7; 126.6; 125.7; 12128.3; 116.6; 111.2; 103.8; 42.6.
HRMS (ESI) (W2): found 201.1024 [M+H] (calcd. 201.1022).

N-allyl-4-(1,3-diphenyl-4,5-dihydroH-pyrazol-5-yl)benzamidelb)
Rf (EtOAch-hex 1:1) = 0.66. Yellow solid. Yield 21%, 32 mg@8 mmol)."H RMN (400 MHz,

CDCls, ppm):& 7.73 (t,d = 7.3 Hz, 4H), 7.31 — 7.25 (m, 4H), 7.34 {d= 7.2 Hz, 2H), 7.20 —
11



7.16 (m, 3H), 7.04 (d] = 7.8 Hz, 2H), 6.80 () = 7.3 Hz, 1H), 6.19 (br s, 1H), 5.95 — 5.88 (m,
1H), 5.30 (dd, = 12.4, 7.2 Hz, 1H), 5.24 (dd,= 17.2, 1.4 Hz, 1H), 5.17 (dd,= 10.2, 1.2 Hz,
1H), 4.07 — 4.04 (m, 2H), 3.86 (ddl= 17.0, 12.4 Hz, 1H), 3.11 (dd,= 17.1, 7.2 Hz, 1H)**C
RMN (100 MHz, CDC}, ppm):3 167.0; 146.9; 146.3; 144.7; 134.2; 134.0; 132).1; 128.9;
128.7; 128.0; 126.3; 125.9; 119.5; 116.9; 113.53643.5; 42.5. HRMS (ESI)n{2): found
381.1835 [M] (calcd. 381.1841).

(E)-N-allyl-4-(3-ox0-3-phenylprop-1-en-1-yl)benzamiflb)

Rf (EtOAch-hex 1:1) = 0.56. Yellow solid. Yield 25%, 29 mgX0nmol).*H RMN (400 MHz,
CDCls, ppm):6 8.04 — 8.02 (m, 2H), 7.85 — 7.79 (m, 3H), 7.70)¢, 8.2 Hz, 2H), 7.63 — 7.59
(m, 2H), 7.55 (d,) = 10.8 Hz, 1H), 7.51 (d] = 7.3 Hz, 1H), 6.26 (s, 1H), 5.99 — 5.92 (hh]),
5.28 (dd,J = 17.1, 1.4 Hz, 1H), 5.21 (dd,= 10.2, 1.2 Hz, 1H), 4.13 — 4.10 (m, 2HIC RMN
(100 MHz, CDC4, ppm):d 190.4; 166.6; 143.4; 138.0; 137.9; 136.0; 13438.2; 128.8; 128.7;
128.6; 127.7; 123.8; 117.0; 42.7. HRMS (ESHvZ: found 292.13302 [M+H] (calcd.
292.1332).

N-(2-methyl-3-oxopropyl)benzamidég)

Rf (CH,CIl,/EtOAc 7:3) = 0.54. Yellow oil. Yield 21%, 16 mg.(8 mmol).'"H RMN (400 MHz,
CDCls, ppm):5 9.71 (s, 1H), 7.74 — 7.72 (m, 2H), 7.50 — 7.46 i), 7.40 (dd,) = 10.2, 4.6 Hz,
2H), 6.73 (br s, 1H), 3.75 — 3.69 (m, 1H), 3.57.503(m, 1H), 2.82 — 2.74 (m, 1H), 1.21 (&=

7.5 Hz, 3H).*C RMN (100 MHz, CDG, ppm):& 204.5; 167.7; 134.3; 131.7; 128.7; 127.0; 46.9;
39.9; 11.6. HRMS (ESI)nf/2): found 214.08399 [M+N4&](calcd. 214.0839).

6-chloroN-(2-methyl-3-oxopropyl)nicotinamidel9)

Rf (CH,Cl/EtOAc 1:2) = 0.27. Beige solid. Yield 20%, 18 ntg08 mmol).*H RMN (400 MHz,
CDCl;, ppm):5 9.70 (s, 1H), 8.73 (d] = 2.2 Hz, 1H), 8.04 (ddl = 8.3, 2.5 Hz, 1H), 7.39 (d,=
8.3 Hz, 1H), 6.92 (s, 1H), 3.78 — 3.70 (m, 1H),63-53.48 (m, 1H), 2.86 — 2.78 (m, 1H), 1.23 (d,
J = 7.5 Hz, 3H)°*C RMN (100 MHz, CDGJ, ppm):5 204.6; 164.8; 154.4; 148.2; 139.2; 129.3;
124.8; 46.7; 39.0; 11.7. HRMS (ESijVg): found 227.0581 [M+H] (calcd. 227.0582).

4-(1,3-diphenyl-4,5-dihydroH-pyrazol-5-yl)N-(2-methyl-3-oxopropyl)benzamidO)

Rf (EtOAch-hex 2:1) = 0.44. Yellow solid. Yield 19%, 31 mg@8 mmol)."H RMN (400 MHz,

CDCl3;, ppm):6 9.69 (s, 1H), 7.73 — 7.66 (m, 4H), 7.39 — 7.34 %), 7.19 — 7.15 (m, 2H), 7.03

(d,J = 7.8 Hz, 2H), 6.79 () = 7.3 Hz, 1H), 6.60 (t) = 5.9 Hz, 1H), 5.30 (dd] = 12.5, 7.0 Hz,

1H), 3.86 (ddJ = 17.1, 12.4 Hz, 1H), 3.74 — 3.67 (m, 1H), 3.53.503(m, 1H), 3.10 (ddJ =
12



17.1, 7.3 Hz, 1H), 2.80 — 2.74 (m, 1H), 1.21Jd; 7.5 Hz, 3H)**C RMN (100 MHz, CDG},
ppm): 6 204.5; 167.3; 152.3; 146.9; 146.4; 133.8; 13339.1;, 128.9; 128.7; 128.0; 126.4,
125.9; 119.5; 113.5; 64.3; 46.9; 43.5; 39.9; 1HBRMS (ESI) (W2): found 412.2020 [M+H]
(calcd. 412.2020).

(E)-N-(2-methyl-3-oxopropyl)-4-(3-oxo-3-phenylprop-1-&nyl)benzamide4l)

Rf (CH.CI,/EtOAc 1:1) = 0.6. Yellow solid. Yield 22%, 28 m@.09 mmol).'H RMN (400
MHz, CDCk, ppm):6 9.71 (s, 1H), 7.95 — 7.93 (m, 2H), 7.67 Jd; 8.2 Hz, 2H), 7.56 (= 7.4
Hz, 1H), 7.45 (tJ = 7.6 Hz, 2H), 7.30 (d] = 8.1 Hz, 2H), 6.63 (s, 1H), 3.73 (ddbs 13.7, 6.7,
4.3 Hz, 1H), 3.53 (ddd] = 13.8, 8.0, 5.8 Hz, 1H), 3.30 t,= 7.5 Hz, 2H), 3.11 () = 7.5 Hz,
2H), 2.81 — 2.76 (m, 1H), 1.22 (d= 7.5 Hz, 3H)**C RMN (100 MHz, CDCJ, ppm):5 204.5;
198.9; 167.5; 145.5; 136.8; 133.3; 132.2; 128.8.82128.1; 127.3; 46.9; 40.0; 39.9; 30.0; 11.6.
HRMS (ESI) (W2): found: 324.1591 [M+H] (calcd. 324.1594).
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