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The kinetic 3-silicon effects of various silyl groups including MesSi, Me3SiMe2Si, (CeHs)Me;Si, (-PrO)-
Me,Si, and (CH30CH2)Me.Si were measured in kc solvolysis of two different benzylic systems of the types,
ArCH(OCOCF3)CH2R (3: Ar=phenyl or 3,5-dichlorophenyl, R=silyl group) and C¢HsCH(Cl)SiMe2R (4:
R=silyl group). The relative (-silyl accelerations were 1.0:5.57:0.309 for R=Me3Si; Me3SiMe;Si, and (CeHs)-
Me:Si, respectively, for the system 3, and 1.0:7.65:0.502: 0.289 for R=MesSi, Me3SiMe,Si, (i-PrO)MeSi, and
(CH30CH2)Me2Si, respectively, for the system 4. The variation of the (-silicon effect with y-substituents was
interpreted as reflecting changes in hyperconjugating abilities of 3-C-Si and (-Si-Si o-bonds mainly due to the
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inductive effect of the y-substituent groups.

The interaction of silicon substituents with a posi-
tive charge on a carbon atom [ to the silicon has re-
ceived wide interests in mechanistic and theoretical or-
ganic chemistry.2~® We previously measured the ki-
netic [F-silyl acceleration by a trimethylsilyl group rel-
ative to a (-t-butyl group in the solvolysis of benzylic
systems of the two different types, C¢Hs CH(OCOCF3)-
CH2R (R=Me3Si and ¢-Bu) and C¢H5;CH(Br)SiMesR
(R=Me;3Si and t-Bu); k¥~MesSi/pF—t=Bu rate ratios at
25 °C were 2.99x105 and 1.07x10° for the former (in
30% aqueous dioxane) and the latter (in 97% 2,2,2-tri-
fluoroethanol) systems, respectively.!®!) A simple ion-
ization mechanism (k.) via an open benzylic cation was
established for the R=Me3Si compound in each system,
on the basis of various mechanistic criteria including
the Winstein—Grunwald solvent analysis, a-deuterium
isotope effects, and the substituent effect of aromatic
groups.'®~!? Thus, in solution, a (3-Me3Si group is
more effective in a stabilizing a carbenium ion than
is a corresponding alkyl group by approximately 6—
7 kcalmol ™! for the benzylic cations 1 (R=Me) and 2
(R=Me) (Chart 1). Despite the marked [-silyl accel-
eration for the open system CgHsCH(Br)SiMe,SiMes,
no kinetic F-silyl acceleration was measured in the k.
solvolysis of a cyclic analog, 1,1,2,2-tetramethyl-1,2-dis-
ilaindan-3-yl chloride, in which the Si,—Sig o-bond is
orthogonal to a vacant p-orbital developed on the ben-
zylic carbon, indicating that the kinetic (-silicon effect
is exclusively hyperconjugative in origin.V)

Although the hyperconjugative stabilization of a car-
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Chart 1.

benium ion by C,—Sig or Si,—Sig o-bonds depends on

-the dihedral angles between the (-silicon and the vacant

p-orbital on the carbenium carbon,®%!!) the hypercon-
jugative interaction may also depend on the ionization
potentials of these o-bonds. In order to get quantitative
information concerning the electronic effect on the hy-
perconjugation abilities of C,—Sig and Si,—Sis o-bonds,
we have measured the kinetic [-silicon effects of vari-
ous silyl groups including Me3SiMe,Si, (CeHs)MeaSi,
(CH3OCH2)Me,Si, and (&-PrO)Me,Si in addition to
Me;3Si in the solvolysis of a-alkylbenzyl and a-silylben-
zyl systems, 3 (X=trifluoroacetate; abbrev. to OTFA)
and 4 (X=Cl) (Chart 2). This paper deals with both
kinetic and product studies on the solvolysis of 1-(3,
5-dichlorophenyl)-2-(pentamethyldisilanyl)ethyl trifluo-
roacetate (3a-OTFA), 2-(dimethylphenylsilyl)-1-phen-
ylethyl trifluoroacetate (3b-OTFA), a-(heptamethyl-
trisilanyl)benzyl chloride (4a-Cl), a-(2-methoxymeth-
y1-1,1,2 2-tetramethyldisilanyl)benzyl chloride (4b-Cl),
and a-(2-isopropoxy-1,1,2,2-tetramethyldisilanyl)benzyl
chloride (4¢-Cl).

Results and Discussion

The esters 3a-OTFA and 3b-OTFA were obtained
in a similar procedure to that described previously for
the preparation of 1-phenyl-2-(trimethylsilyl)ethyl tri-

SiMe R SiMez R
ArGHCHp CeHsGHSiMe;
X X

3 4
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d: R=Me, Ar= 3,5-C12C6H3

Chart 2.
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fluoroacetate (3c-OTFA),!® via the addition of cor-
responding (silylmethyl)magnesium chlorides to 3,5-
dichlorobenzaldehyde and benzaldehyde, respectively,
and the subsequent treatment of the resulting alcohols
with trifluoroacetic anhydride. The chlorides 4a-Cl and
4b-Cl were prepared via the reaction of benzylchloride
with lithium diisopropylamide (LDA) at —78 °C in the
presence of 1-chloro-1,1,2,2,3,3,3-heptamethyltrisilane
and 1-chloro-2-methoxymethyl-1,1,2,2-tetramethyldisi-
lane, respectively, in the same procedure as that de-
scribed previously for the preparation of a-(pentameth-
yldisilanyl)benzyl chloride (4d-Cl).!V A related reac-
tion using 1,2-dichloro-1,1,2,2-tetramethyldisilane gave
a-(2-chloro-1,1,2,2-tetramethyldisilanyl)benzyl chloride,
which was converted into 4c-Cl via a treatment with
isopropyl alcohol in the presence of triethylamine.

The rates of solvolysis for 3a-OTFA, 3b-OTFA,
4a-Cl, 4b-Cl, and 4c-Cl were measured spectropho-
tometrically at 25+0.05 °C by the same method as
that described previously'®—'? using (0.1—1.0)x10~*
M (1 M=1 moldm~3) solutions in aqueous acetone
and aqueous dioxane. All the solvolyses followed ex-
cellent first-order kinetics over three to four half-lives
(correlation coeficient >0.9999), and the results are
given in Tables 1 and 2, which include the rate data
for 3c-OTFA, 1-(3,5-dichlorophenyl)-2- (trimethylsi-
lyl)ethyl trifluoroacetate (3d-OTFA) and 4d-Cl for
comparison.!%t)

The methanolysis of 3a-OTFA quantitatively gave
a mixture of 3,5-dichlorostyrene (5) and 1-(3,5-di-
chlorophenyl)- 1-methoxy-2- (pentamethyldisilanyl)eth-
ane (6) in a ratio of 60:40, while the solvolysis of
3b-OTFA in aqueous acetone exclusively gave styrene
(Chart 3). These findings are consistent with the re-
sults previously reported for the k. solvolysis of 3c-
OTFA via the o-(trimethylsilylmethyl)benzyl cation
1 (R=Me), i. e., both [S-silyl-elimination and substi-
tution occurred in methanolysis, while the elimination
proceeded exclusively in aqueous acetone.'® The solvol-
ysis of 4a-Cl in 80% aqueous acetone involved a skeletal
rearrangement affording a-[dimethyl(hydroxy)silyl]-a-
(pentamethyldisilanyl)toluene (7a; Y=OH) as a single
product in 95% yield. Similarly, the ethanolysis of 4b-
Cl cleanly gave 4,4,6,6-tetramethyl-5-phenyl-2,7-dioxa-
4,6-disilanonane (7b: Y=0Et), and the methanolysis of
4c-Cl afforded «,a-bis[dimethyl(methoxy)silyljtoluene
(7e; Y=OMe) as a single product; in the latter case,
an isopropoxyl group on the S-silicon atom in the start-
ing material (4c-Cl) was also replaced with a methoxyl
group under solvolysis conditions. The 1,2-silyl-rear-
rangement from the a-silicon atom to the carbenium
carbon has already been established for 4d (X=Br);
it solvolyzes via the rate-determining formation of a-
(pentamethyldisilanyl)benzyl cation 2 (R=Me), which
reacts with water, methanol, ethanol, and trifluoroeth-
anol yielding the corresponding silanol or silyl ethers
7d (Y=O0H, OMe, OEt, and OCH;CF3, respectively)
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after the skeletal rearrangement irrespective of nucleo-
philicity of solvents.!V Thus, the product study sug-
gests that a replacement of a [-silyl group from Me3Si
to Me3SiMe;Si, (CeHs)MeaSi, (CHgocHg)MGQSi, or
(-PrO)Me,Si does not cause changes in the mechanism
of the solvolysis for the two systems 3 and 4.

The f(-silyl accelerations by various silicon sub-
stituents relative to a G-trimethylsilyl group in the two
benzylic systems are summarized in Tables 3 and 4,
as kyet (= kOsilyl /EA-MesSh) = Although the kinetic influ-
ences of vy-substituents are relatively small, a y-Me3Si
group enhances the S-silicon effect relative to a y-Me
group by a factor of ca. 6—8, whereas CgHj, #PrO,
and CH3OCH; groups reduce the §-silyl acceleration
by factors of 2—3 relative to methyl. We previously
quantified the kinetic (-silyl acceleration by a 8-Me3Si
group relative to a §-t-butyl group in the a-alkylbenzyl
and a-silylbenzyl systems, i. e., k8-MesSi/gft-Bu rate
ratios were 2.99x10% for 3c (X=0OTFA) and 1.07x10%
for 4d (X=Br), respectively.!!?) From these rate ratios
and the k. values, kinetic (-silyl accelerations by var-
ious silyl groups can be estimated, i. e., k85! /f#-t-Bu
rate ratios were 1.7x10% and 6.2x10* for Me3SiMe,Si
and (CgHs)MesSi, respectively, in the system 3,
and 8.2x10%, 5.9x10%, and 3.1x10* for Me3SiMe,Si,
(+PrO)Me»Si, and (CH30CH2)MesSi, respectively, in
the system 4; the results are included in Tables 3 and
4.

The steric factor should be taken into consideration
in interpreting the effect of y-substituents, because the
solvolysis rates markedly decrease with increasing steric
size of a-substituent groups for benzylic compounds.'®
However, this steric effect must be very small or negligi-
ble for «y-substituents in view of the fact that the steric
effect is insignficant even for S-substituents in the sys-
tems 3 and 4. For example, 3,3-dimethyl-1-phenyl-1-
butyl trifluoroacetate (8a: X=0TFA) was less reactive
than a-methylbenzyl trifluoroacetate (8b; X=0TFA)
by a factor of 1.8 in 30% aqueous acetone, corresponding
to a kA~t"Bu/kB-H rate ratio of only 0.6 in the system 3,
while a-(¢-butyldimethylsilyl)benzyl p-toluenesulfonate
(9a; X=0Ts) was less reactive than a-(trimethylsilyl)-
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Table 1. Rates of Solvolysis for 3-OTFA

Compound Aryl group Solvent® k/s™t
3a—OTFA  3,5-Dichlorophenyl 80D (1.96+0.06)x 1073 ©
3b—OTFA  Phenyl 90D (2.32+0.06)x1073 9
3c—OTFA  Phenyl 90D 7.52x1072 ©
3d—OTFA  3,5-Dichlorophenyl 80D 3.52x107*

a) At 25°C. b) 80D: 80/20 (v/v) dioxane/water and 90D: 90/10 (v/v)

dioxane/water mixtures. c)
runs. e) Data taken from Ref. 10.

Table 2. Rates of Solvolysis for 4-C1¥
Compound ‘Solvent® k/s™1
4a—Cl 50A (3.9840.04) x107* ©
4b-Cl 30A (4.4240.02)x107* 9
4c—Cl 30A (8.4440.10)x107* ©
4d-Cl 50A 5.20x107° ©
30A 1.53x1073 ©

a) At 25 °C. b) 50A and 30A: 50/50 and 30/70
(v/v) acetone/water mixtures. c¢) Average of two runs.
d) Average of three runs. e) Data taken from Ref. 11.

Table 3.  Kinetic -Silicon Effects of Various Silyl
Groups in Solvolysis for the a-Alkylbenzyl System
32
B-Silyl group krel kB—silyl pB—t=Bu
Me3Si 1.0 2.99x10°
MesSiMesSi 5.57 1.67x108 ©
(CeHs)Me2Si 0.309 6.15x10* ©

a) At 25 °C. b) Reported previously (Ref. 10).
¢) Calculated from kg values and a k8-silyl/gB-1-Bu ra
tio of 2.99x105 for 3¢ (X=OTFA).

Table 4. Kinetic (3-Silicon Effects of Various Silyl

Gr)oups inSolvolysis for the a-Silylbenzyl System
43.

B-Silyl group Erel B—silyl /pB—t=Bu

MesSi 1.0 1.07x10° ®

MesSiMe;Si 7.65 8.19x10°

(-PrO)Me,Si 0.552 5.91x10* ©

(CH30CHs)Me,Si 0.289 3.09x10* ©

a) At 25 °C. b) Reported previously (Ref. 11).
c) Calculated from ke values and a gB-silyly kB-t-Bu g
tio of 1.07x10° for 4d (X=Br).

benzyl p-toluenesulfonate (9b; X=0Ts) by a factor of
1.4 in 40% aqueous acetone, indicating a k5-t"Bv/ff-Me
ratio of only 0.7 in the system 4 (Chart 4).1%!?

Vencle et al. reported negative Hammett p val-
ues in the solvolysis for the system of the type,
ArMe,SiCH,CH,Cl, indicating a buildup of some pos-
itive charge on the [-silicon atom in the transition
state.!¥ The analysis of the substituent effects for the
two systems, ArCH(OTFA)CH,SiMe; and ArCH(CI)-
SiMe,SiMes, in terms of the Yukawa~Tsuno equation'®

Average of three runs.

d) Average of two

C6H5?HCH2R CsH5?HSiM92R
X X

8 9
a:R=t-Bu,b: R=Me

Chart 4.

revealed significantly reduced p values, i. e., p=—3.05
and —3.71, respectively, compared to typical values
around —5 in the k. solvolysis of secondary a-alkyl-
benzyl compounds, indicative of extensive delocaliza-
tion of a positive charge to the §-silicon atom via o—
7 interactions.'®'? The v-substituent effect shown in
Tables 3 and 4, therefore, indicates that a phenyl and
an alkoxyl groups are less effective in stabilizing the
partial positive charge built up on the (-silicon atom
than is a methyl group, whereas the effect of a y-Me3Si
group is stabilizing relative to methyl. This is in sharp
contrast to the situation for carbenium ion, i.e., a-
substitution by alkoxyl and phenyl groups causes enor-
mous stabilization, whereas a-silicon substituents rela-
tive to methyl destabilize a carbenium ion.2*'? The-
oretical calculations'® indicated that the effect of o-
substituents on stability of silicenium ion is small com-
pared to that for carbenium ion, e. g., stabilization
energies of R-SiHJ relative to H3Sit are 36.8, 17.9,
15.1, and 12.6 kcalmol™! for R=NH,, OH, CH3,and
SiH3, respectively. Mayr et al. quantified relative sta-
bilities of various silicenium ions in solution based on
the rates of hydride transfer from hydrosilanes to car-
benium ions.!” They revealed that the a-substitution
effects of a Me3SiO and a Me3Si groups are both compa-
rable with that of methyl, while a phenyl group is desta-
bilizing relative to methyl. The order of the rate accel-
eration with respect to -y-substituents in the present
case, i. e., Me3Si>Me> CgHsXalkoxyl=methoxymeth-
yl, is different from the substituent effect on stability
of silicenium ions, and is best interpreted as reflecting
changes in hyperconjugative abilities of the 3-C-Si or
(3-Si-Si o-bonds mainly due to inductive effect of the
groups attached to the [-silicon atom.

Shiner and co-workers reported distinct evidence for
direct 1,3-interactions between silicon and a positive
charge v to the silicon.’® Such interactions, depicted
in structure 10, may account for the enhanced reac-
tivities for the 7-silyl-substituted compounds 3a and
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Chart 5.

4a (Chart 5). However, the absence of any products
anticipated from the direct 1,3-interaction (such as 1,
3-elimination products)'® indicates that the 7-silicon
substituent exerts not a direct but an indirect influence
on the ionization of the present benzylic systems prob-
ably through an inductive electron supply from the -
Mej3Si group to the 3-silicon atom resulting in enhance-
ment of hyperconjugative abilities of the §-C-Si and (-
Si-Si o-bonds.

It is also worth nothing that 4c-Cl bearing a v-MeO
group was less reactive than 4d-Cl. A ~y-methoxyl
group is well known to accelerate the rate of ionization
via anchimeric assistance, as observed in the solvoly-
sis of y-methoxyalkyl systems.'®) The reduced reactiv-
ity of 4c-Cl compared to 4d-Cl reveals essentially no
contribution from the y-MeO-participation toward ion-
ization, depicted in structure 11; this is also in agree-
ment with the quantitative formation of the S-silyl-re-
arranged product (7c), indicative of the exclusive oc-
currence of the [-silicon-promoted solvolysis in the a-
(disilanyl)benzyl system 4. The absence of the y-MeO-
anchimeric assistance undoubtedly reflects a superior
cation-stabilizing ability of a §-silicon substituent com-
pared to a y-methoxyl group. In connection with the
competition between [-silicon effect and participation
by other neighboring groups, it is worth stating that a
(B-MesSi group completely inhibits the aryl-participa-
tion in the ionization of 2-aryl-2-(trimethylsilyl)ethyl
chlorides,? while the ionization of 1-(pentamethyldisil-
anyl)-2-phenylcyclopropyl bromide involves competitive
o(SiSi)- and o(CC)-assisted processes.??)

Experimental

Proton NMR spectra were recorded at 60 MHz on a
Hitachi R-20B spectrometer in carbon tetrachloride, and
the chemical shifts were reported in ppm downfield from
tetramethylsilane. Infrared spectra were recorded on a Hi-
tachi R-215 spectrophotometer. Mass spectra were recorded
on a Hitachi M-60 mass spectrometer. Purification of sol-
vents used in solvolysis and the procedure for rate mea-
surements using a Hitachi 220A spectrophotometer were de-
scribed previously.'®*?

1-(3,5-Dichlorophenlyl)-2-(pentamethyldisilanyl)-
ethyl Trifluoroacetate (3a-OTFA). To a stirred so-
lution of (pentamethyldisilanyl)methylmagnesium chloride
prepared from (pentamethyldisilanyl)methyl chloride (3.01
g, 16.6 mmol) and magnesium (465 mg) in THF (30 cm?®)
was added a solution of 3,5-dichlorobenzaldehyde (3.07 g)
in ether (25 cm®) at room temperature. The mixture was
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stirred for 30 min at ambient temperature. A crude oil ob-
tained after the usual workup was purified by means of col-
umn chromatography (SiO2) affording 1-(3,5-dichlorophen-
yl)-2-(pentamethyldisilanyl)ethanol (2.86 g, 59%) as a col-
orless oil: IR (neat) 3350, 1245, and 850 cm™!; 'THNMR
§=-0.07 (15H, as a single peak), 1.04—1.18 (2H, m), 1.99
(1H, br. s, OH), 4.71 (1H, t, J=7.8 Hz), 7.17 (3H, almost
as a single peak). The alcohol was converted into the corre-
sponding trifluoroacetate, 3a-OTFA, in a similar procedure
to that described previously:lo) IR (neat) 1775, 1250, 1220,
1170, 1140, and 855 cm™'; *HNMR 6§=-0.05 (3H, s), 0.05
(9H, s), 0.03 (3H, s), 1.34—1.50 (2H, m), 5.71—5.90 (1H,
m), and 7.23—7.36 (3H, m). Found. C, 43.35; 5.01%. Calcd
for 015H21012F3028i2: C, 43.17; H, 5.07%.

2- (Dimethylphenylsilyl)-1-phenylethyl Trifluoro-
acetate (3b-OTFA). Into an ethereal solution of
(dimethylphenylsilyl)methylmagnesium chloride prepared
from (chloromethyl)dimethylphenylsilane (5.00 g) and mag-
nesium (0.76 g) in ether (50 cm®), was added a solution of
benzaldehyde (3.52 g) in ether (25 cm®) at room tempera-
ture. The mixture was stirred for 1 h. The usual workup
followed by purification of a crude oil by means of col-
umn chromatography (SiO2) gave 2-(diemthylphenylsilyl)-
1-phenylethanol (7.0 g): 'HNMR 6=0.11 (6H, s), 1.52—
1.77 (2H, m), 5.69—6.02 (1H, m), and 7.20—7.48 (10H, m).
Found: C, 75.26; H, 7.91%. Calcd for C16H200Si: C, 74.95;
H, 7.86%. The alcohol was converted into the correspond-
ing trifluoroacetate in a similar procedure to that described
previously:'® *HNMR 6=0.20 (3H, s), 0.22 (3H, s), 1.19—
1.53 (2H, m), 4.55—4.90 (1H, m), 7.14—7.60 (10H, m).

a- (Heptamethyltrisilanyl)benzyl Chloride (4a-
Cl). Into a stirred solution of 1-chloro-1,1,2,2,3,3,3-
heptamethyltrisilane (5.84 g, 26 mmol) and lithium diiso-
propylamide (LDA) prepared from butyllithium (1.7 M in
hexane, 15 cm®, 26 mmol) and diisopropylamine (3.10 g) in
THF (25 cm®) was added a solution of benzyl chloride (3.23
g, 26 mmol) in THF (5 cm®) at —78 °C under argon. The
mixture was stirred for 36 h at that temperature, diluted
with pentane (50 cm®), and poured into water. Organic
phase was washed with 10% sulfuric acid, aq NaHCOs, and
aq NaCl, and dried (MgSOy4). After evaporation of the sol-
vent, the residual oil was distilled affording 4a-Cl (3.99 g,
51%) as a colorless oil: Bp 93—94 °C (ca. 50 Pa): 'HNMR
(400 MHz, CDCl3) 6=0.015 (3H, s), 0.067 (3H, s), 0.089 (9H,
s), 0.092 (3H, s), 0.182 (3H, s), 4.470 (1H, s), and 7.260 (5H,
almost as a single peak). Found: C, 52.99; H, 8.44%. Calcd
fOI‘ 014H27018132 C, 53.37; H, 8.46%.

a- (2- Methoxymethyl- 1, 1, 2, 2- tetremethyldisil-
anyl)benzyl Chloride (4b-Cl). In a similar proce-
dure to that described for the preparation of 4a-Cl, benzyl
chloride (2.66 g) was treated with LDA (1.1 equiv) in the
presence of 1-chloro-2-methoxymethyl-1,1,2,2-tetramethyl-
disilane (4.57 g)?" (=78 °C, 21 h). A crude oil obtained
after a workup was distilled, affording 4b-Cl1 (4.12 g, 67%):
Bp 88—90 °C (ca. 30 Pa); IR (neat) 1590, 1450, 1250, 1100,
830, and 790cm™!; 'HNMR 6=0.0 (3H, s), 0.03 (3H, s), 0.08
(3H, s), 0.15 (3H, s), 3.17 (2H, s), 3.27 (3H, s), 4.42 (1H, s),
and 7.19 (5H, almost s). Found: C, 54.35; H, 8.06%. Calcd
for C13H230108i2: C, 54.42; H, 8.08%.

a-(2-Isopropoxy-1,1,2,2-tetramethyldisilanyl)ben-
zyl Chloride (4c-Cl).  In a similar procedure to that
described for the preparation of 4a-Cl, benzyl chloride (4.48
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g) was treated with LDA (1.1 equiv) in the presence of 1,2-
dichloro-1,1,2,2-tetramethyldisilane (7.89 g)(—78 °C, 20 h).
A crude mixture obtained after evaporation of the solvent
was distilled to give 2.82 g (30%) of a-(2-chloro-1,1,2,2-tetra-
methyldisilanyl)benzyl chloride, bp 89—95 °C (ca. 300 Pa).
The chloride was added to a solution of isopropyl alcohol (5
cm?®) and triethylamine (10.7 g) in ether (35 cm?®) at 0 °C.
The mixture was stirred for 15 min at 0 °C, washed with
aq NaHCOgs, and dried (MgSOy4). After evaporation of the
solvent, the residual oil was distilled to give 4c-Cl (0.61 g,
20%): Bp 92—93 °C (ca. 300Pa); 'HNMR. 6=0.07 (6H, s),
0.14 (6H, s), 1.10 (6H, d, J=6 Hz), 3.87 (1H, sep, /=6 Hz),
4.40 (1H, s), and 7.20 (5H, almost as a single peak). Found:
C, 55.96; H, 8.57%. Calcd for C14H25Cl0Si;: C, 55.88; H,
8.37%.

Product Studies. Solvolysis products were determined
for 3a-OTFA, 4a-Cl, 4b-Cl, and 4c-Cl using 0.05—0.1
M solutions in the presence of equivalent amounts of 2,6-
lutidine. The solvolysis of 3a-OTFA in methanol (25 °C, 3
h) quantitatively gave a mixture of 3,5-dichlorostyrene (5)
and 1-(3,5-dichlorophenyl)-1-methoxy-2- (pentamethyldisil-
anyl)ethane (6) in a ratio of 60:40. 6: 'HNMR §=-0.06
(15H, s), 0.97—1.18 (2H, m), 3.24 (3H, s), 4.10—4.25 (1H,
m), and 7.29 (3H, almost as a single peak). Found: C,
48.05; H, 7.49%. Caled for C13H24Cl20Sis: C, 48.28; H,
7.48%. The solvolysis of 4a-Cl in 80% aqueous acetone (50
°C, 8 h) gave a-[dimethyl(hydroxy)silyl]-a-(pentamethyldi-
silanyl)toluene (7a-OH) in 95% yield: IR (neat) 3400, 1245,
and 830 cm~!; '"HNMR. 6=-0.17 (9H, s), 0.04 (3H, s), 0.11
(3H, s), 0.06 (3H, s), 0.20 (3H, s), 1.40 (1H, s, disappeared
on addition of D20), 1.61 (1H, s), and 6.99—7.05 (5H, m).
Found: C, 56.33; H, 9.27%. Calcd for C14H2s0Sis: C, 56.69;
H, 9.51%. The solvolysis of 4b-Cl in ethanol (80 °C, 10 d)
quantitatively gave 4,4,6,6-tetramethyl-5-phenyl-2,7-dioxa-4,
6-disilanonane (7b-OEt): IR (neat) 1590, 1250, 1200, 1100,
1080, 1030, 930, 830, and 700 cm™'; 'H NMR 6=0.0 (6H, s),
0.07 (6H, s), 1.15 (3H, t, J=6.6 Hz), 1.69 (1H, s), 2.91 (2H,
s), 3.22 (3H, 5), 3.61 (2H, q, J=6.6 Hz), and 6.81—7.25 (5H,
m). Found: C, 60.06; H, 9.44%. Calcd for C15H2502Siz: C,
60.75; H, 9.52%. The solvolysis of 4c-Cl in methanol (50 °C,
8 h) quantitatively gave a,a-bis[dimethyl(methoxy)silyl]tol-
uene (7e-OMe): MS m/z (rel intensity) 268 (M™T, 28), 253
(27), 237 (23), 207 (20), 179 (9), 163 (46), 148 (100), 133
(48), 89 (47), 75 (52), 73 (62), 59 (38); '"HNMR 6=0.07
(12H, s), 1.64 (1H, s), 3.35 (6H, s), 7.02 (5H, almost s).
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