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Figure 1. The structures of 1 and Ku-0063794.
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The optimization of a potent and highly selective series of dual mTORC1 and mTORC2 inhibitors is
described. An initial focus on improving cellular potency whilst maintaining or improving other key
parameters, such as aqueous solubility and margins over hERG IC50, led to the discovery of the clinical
candidate AZD8055 (14). Further optimization, particularly aimed at reducing the rate of metabolism
in human hepatocyte incubations, resulted in the discovery of the clinical candidate AZD2014 (21).

� 2013 Elsevier Ltd. All rights reserved.
The mammalian target of rapamycin (mTOR) is a key target in
the development of antitumor therapies.1 Activated by growth
factor/mitogenic stimulation activation of the phosphatidylinositol
3-kinase (PI3K)/Akt signaling pathway mTOR is a central regulator
of cell growth and proliferation. This PI3K–Akt–mTOR pathway is
one of the most frequently dysregulated pathways in cancer.2

mTOR, a serine/theronine kinase of approximately 289 kDa in size,
is a member of the evolutionary conserved eukaryotic PI3K like ki-
nase (PIKK) family of proteins, for example DNA dependent protein
kinase (DNA-PK) and Ataxia-telangiectasia mutated (ATM).3–5

The known mTOR inhibitor Rapamycin and its analogues
(RAD001, CCI-779, AP23573) bind to the FKBP12/rapamycin com-
plex binding domain (FRB), resulting in suppression of signaling
to the downstream targets p70S6K and 4E-BP1.6,7 The potent but
non-specific inhibitors of PI3K, LY294002 and wortmannin, have
also been shown to inhibit the kinase function of mTOR; however,
in this case the catalytic domain of the protein is targeted.8

Recently it has been shown that mTOR can exist in an alterna-
tive, rapamycin insensitive, complex that signals to Akt.9 The exis-
tence of both a rapamycin sensitive complex (mTORC1) and a
rapamycin insensitive complex (mTORC2) may provide an expla-
nation for the differences observed in the earlier work of Brunn
et al.8 and Edinger et al.10 Rapamycin and its analogues have been
shown to activate AKT signaling as a consequence of inhibition of
the negative feedback loop downstream of mTORC1.11 Moreover,
this is associated with a shorter time to progression in glioblas-
toma patients treated with rapamycin suggesting that dual
mTORC1 and 2 inhibitors that inhibit AKT signaling could offer
greater clinical benefit compared with rapalogues.12 In addition,
dual mTORC1 and mTORC2 inhibitors may exhibit a broader spec-
trum of clinical activity.

We have previously described the identification of compound 1
from a screening campaign and the subsequent optimization of the
scaffold resulting in the discovery of Ku-0063794 (Fig. 1).13

Ku-0063794 is a potent inhibitor of mTOR kinase
(IC50 = 0.0025 lM) and displays a high level of selectivity against
other members of the PIKK family (IC50 against PI3K isoforms a,
b, c, d = 8.9, >30, >30 and 5.3 lM, respectively).14 Ku-0063794 also
showed a high level of general kinase selectivity and was inactive
against a panel of over 200 kinases when tested at 10 lM. In cells
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Table 1
The introduction of basic groups to the C7 aryl substituent
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Figure 2. The structures of 6 (pAKT IC50 = 2.92 lM) and 7 (pAKT IC50 = 0.026 lM).

Figure 3. Matched pairs plot highlighting the impact of switching from a
morpholine to a 3S-methyl morpholine on both cellular pIC50 and solubility.
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Ku-0063794 has been shown to modulate downstream markers of
mTORC1 (inhibition of pS6 at Ser235/236 IC50 = 0.66 lM) and
mTORC2 (inhibition of pAKT at Ser473 IC50 = 0.24 lM).15 Ku-
0063794 has been shown to be active in mouse xenograft
models.16

Despite the high affinity of Ku-0063794 for mTOR kinase the
moderate cellular potency was felt to offer scope for further
improvement. Data generated on Ku-0063794 and close analogues
highlighted the similar cellular potencies and structure–activity
relationship (SAR) seen with both the pS6 (S235/236) and the pAKT
(S473) measures. As a result a simplified cascade with the pAKT
(S473) cellular measure as the primary assay was introduced.
Enzyme data and pS6 (S235/236) cellular data was generated on
compounds of interest only. In addition, a relatively low aqueous
solubility (2.4 lM)17,18 and relatively high potency against the
hERG (human ether-a-go-go-related gene) ion channel
(IC50 = 8.3 lM)19 may also present problems for the long term clin-
ical development of Ku-0063794. Consequently, further optimiza-
tion was initiated to identify highly selective compounds with
increased cellular potency, improved aqueous solubility and an im-
proved margin to the hERG IC50.

Our initial strategy to improve aqueous solubility was the intro-
duction of basic functionality, thereby giving a charged molecule at
physiological pH. Previous studies had shown that the pendant aryl
ring at the C7-position of the Pyridopyrimidine core could tolerate
a variety of substituents, although the presence of the benzyl alco-
hol H-bond donor was known to be advantageous. With this in
mind we looked to replace the benzyl alcohol with a range of sec-
ondary benzyl amines (Table 1). Such compounds were generally
well tolerated with certain examples (e.g., 2) showing improved
potency. As anticipated these compounds showed a dramatic
improvement in solubility and a reduction in hERG potency was
also observed. Removal of the methoxy group, 3, did give a slight
reduction in potency but excellent solubility was retained.
Attempts to introduce tertiary amines in this position resulted in
a significant reduction in potency (5 cf 4) highlighting the
importance of an H-bond donor in that region of the molecule.
Despite the improved cellular potency and solubility, 2 showed
little oral exposure presumably due to compromised permeability
and higher efflux. The apparent permeability (Papp), as measured
in MDCKII cells, for Ku-0063794 and 2 in both the A–B and B–A
directions are 26/453 nm/s and 150/166 nm/s, respectively.20,21

The oxygen of the C4-morpholine has been established as a key
pharmacophoric element for this series13 with attempts to remove
this causing a considerable reduction in potency (e.g., 6). Analogies
to other known PIKK family inhibitors would suggest that this oxy-
gen participates in a key interaction with the hinge region of the
kinase. However, conservative changes in this region are tolerated,
and in particular the 3S-methyl morpholine containing compound,
7, was identified as having significantly improved cellular potency
(Fig. 2). Interestingly, a modest increase in solubility was also ob-
served for this compound (16 lM).

The impact of replacing the C4-morhpoline with a 3S-methyl
morpholine has been examined across a range of analogues. An
analysis of matched pairs (Fig. 3) shows a consistent improvement
in cellular potency with an average increase of 0.73 ± 0.11 in pIC50.
A similar analysis also highlights a trend for improved solubility,
on average between 5- and 10-fold; however, no assessment of
the solid state properties of these compounds has been made.
These observations are consistent with the 3S-methyl group either
locking the morpholine ring in a more favorable conformation for
binding or accessing a small lipophilic pocket upon binding. The
increase in solubility may reflect a lowering in crystal lattice
energy due to disrupted crystal packing upon the addition of the
methyl group. Similar SAR regarding the hinge binding morpholine
has recently been described for other PIKK inhibitors although the
observations are subtly different between series.22

Aqueous solubility is often negatively correlated with lipophil-
icity, hence another strategy adopted was to reduce the lipophilic-



Table 4
Modifications to the C7 benzyl amine functionality
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Impact of switching from a Pyridopyrimidine to a Pteridine core

N N

N

N
O

N

O

N

N

N

N

N
O

N

O

8 9

Compd
No.

pAKT (S473) IC50

(lM)
C logP logD Solubility

(lM)
hERG IC50

(lM)

8 0.094 4.14 3.75 66 4.0
9 0.103 3.40 >4.0 13 13.2

Table 5
Modifications to the C7 methoxy and amide substituents

N N

N

R

N

O

N
O

Compd
No.

R pAKT
(S473)

Solubility
(lM)

hERG
IC50

Hu Heps
(lL/min/

6

1214 K. G. Pike et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1212–1216
ity of the core. Pteridine analogues (e.g., 9) were tolerated; how-
ever, the anticipated reduction in lipophilicity (based on ClogP
prediction)23 was not reflected in the measured logD values18

and indeed a reduction in solubility was observed (Table 2).
We next focused our attention on the C2 substituent. A wide

range of amines were tolerated including non-morpholine substit-
uents, basic amines and acyclic amines (8–12) as were aromatic
substituents, such as compound 13; however, when assessing the
overall balance of properties the 3S-methyl morpholine analogue,
14, appeared optimal (Table 3).

Compound 14 is a potent inhibitor of mTOR kinase
(IC50 = 0.00013 lM) and displays a high level of selectivity against
other members of the PIKK family (IC50 against PI3K isoforms a, b,
c, d = 3.6, 19, 3.2 and 15 lM, respectively) and was inactive against
a general panel of over 200 kinases when tested at 10 lM. Unlike
rapamycin, 14 inhibits both mTORC1 and mTORC2 in cells with
similar potencies (pS6 (S235/236) IC50 = 0.027 lM, pAKT (S473)
IC50 = 0.024 lM). Compound 14 also demonstrates a more com-
plete inhibition of phosphorylation of mTORC1 substrate 4E-BP1
(Thr37/46) compared to rapamycin in MCF-7 cells and was also
shown to inhibit pAKT (S473) in this cell line whereas rapamycin
treatment resulted in an activation of AKT as a consequence of
inhibition of a negative feedback loop.24 Compound 14 has been
shown to modulate substrates of both mTORC1 and 2 in vivo and
Table 3
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delivers a dose-dependent tumor growth inhibition in mouse
xenograft models.24 Compound 14 was subsequently selected for
clinical development and referred to as AZD8055.

Despite its promising profile in preclinical disease models,
AZD8055 was found to exhibit high turnover in human hepato-
cytes (36.4 lL/min/106 cells) and also showed lower bioavailability
in rat compared with mouse (12% cf 81%). The high turnover of
AZD8055 in human hepatocytes, combined with inconsistent ro-
dent pharmacokinetics (PK), was felt to constitute a considerable
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Scheme 1. Reagents and conditions: (a) (i) NH3(liq), 18 bar, 130 �C, 90%; (ii) SOCl2,
THF, rt; (iii) NH3(g), THF, rt, 92% over 2 steps; (b) (COCl)2, toluene, 115 �C, 95%; (c)
POCl3, Hünigs base, toluene, 100 �C, 48%; (d) morpholine, Hünigs base, CH2Cl2, 0 �C–
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risk when trying to predict clinical exposure and hence optimiza-
tion was continued to identify compounds with an increased con-
fidence of achieving the required clinical exposure.

The metabolism of functional groups such as benzyl alcohols
and aryl–methyl ethers is well precedented and were postulated
as potential metabolic liabilities in AZD8055. Steric crowding of
the benzyl alcohol, such as in compound 15, had little impact on
human hepatocyte metabolism (Table 4). A primary amide could
be used to replace the benzyl alcohol generating a potent com-
pound with a dramatically increased aqueous solubility (16),
although the rate of human hepatic turnover remained high. Sub-
stitution on the amide, 17, did reduce the rate of turnover in hu-
man hepatocytes and generally maintained the excellent
properties of the molecule, albeit with a reduction in aqueous sol-
ubility. A further reduction in hepatic turnover was observed for
the tertiary amide 18; however, this change was associated with
a significant reduction in potency again highlighting the impor-
tance of an H-bond donor in this vicinity. Limited attempts were
made to replace the C7 phenyl ring with aromatic heterocycles
but such compounds lost activity (data not shown).

Strategies to reduce potential metabolism of the methoxy
group, such as difluorination (19) or cyclisation (20), were broadly
tolerated but failed to deliver a reduction in hepatic turnover (Ta-
ble 5). Removal of the methoxy group (21), however, did result in a
compound with good cellular potency and low hepatic turnover.
Compound 21 showed excellent aqueous solubility, margin to the
hERG IC50 and was shown to have good oral exposure in both rat
and mouse. Variation of the amide substituent did result in modest
improvements in potency with compound 22, in particular, show-
ing an attractive in vitro profile. However, 22 failed to deliver oral
exposure in rodents.

Compound 21 is a potent inhibitor of mTOR kinase
(IC50 = 0.0028 lM) and displays a high level of selectivity against
other members of the PIKK family (IC50 against PI3K isoforms a,
b, c, d = 3.8, >30, >30 and >29 lM, respectively) and was inactive
against a general panel of over 200 kinases when tested at
10 lM. Compound 21 inhibits both mTORC1 and mTORC2
in vitro (pS6 (S235/236) IC50 = 0.2 lM, pAKT (S473) IC50 = 0.08 lM)
and has shown dose-dependent tumor growth inhibition in a
mouse MCF7 xenograft model alongside modulation of mTORC1
and mTORC2 biomarkers.25 Compound 21 shows consistent expo-
sure in rodents and a low turnover in human hepatocyte incuba-
tions and was subsequently selected for clinical development and
referred to as AZD2014. A comparison of key in vitro parameters,
including potency, solubility, protein binding26 and rodent PK,27

for Ku-0063794, AZD8055 and AZD2014 is given in Table 6.
The general synthesis of compounds 2–5 is shown in Scheme

1.28 Reaction of 2,6-dichloronicotinic acid (23) with liquid ammo-
Table 6
Comparison of key pre-clinical parameters

Ku-0063794 AZD8055 AZD2014

mTOR IC50 (lM) 0.0025 0.00013 0.0028
pAKT (S473) IC50 (lM) 0.24 0.024 0.080
pS6 (S235/236) IC50 (lM) 0.66 0.027 0.2
logD 3.25 3.23 3.16
Solubility (lM) 2.4 30 >600
fu (Mouse) 0.01 0.04 0.05
fu (Rat) 0.15 0.08 0.09
fu (Human) 0.08 0.13 0.05
Hu Heps (lL/min/106 cells) — 36.4 <4.2
Mouse clearance (mL/min/kg) 3.1 42.8 10.4
Mouse bioavailability 61% 81% >100%
Rat clearance (mL/min/kg) 35.8 36.6 12.6
Rat bioavailability 33% 12% 40%
hERG IC50 (lM) 8.3 30.4 47.5
nia at elevated temperature and pressure results in the selective
introduction of an amino group into the C2 position and subse-
quent conversion of the carboxylic acid to the primary amide, via
the acyl chloride intermediate, generates 24 which can then be
cyclised with oxalyl chloride to complete the Pyridopyrimidine
scaffold (25). Chlorination with phosphorous oxychloride results
in the trichloro intermediate 26 and selective installation of the
C4 amine is achieved by reaction with the desired amine at low
temperature (27). Reaction with a second amine at elevated tem-
perature is then used to install the C2 amine functionality (28). Fi-
nally, the C7 aryl substituent can be installed using palladium
mediated cross couplings with desired boronic ester to give Ku-
0067394. Conversion of the benzyl alcohol to a benzyl chloride
and subsequent displacement with the desired amine generates
compounds 2–5.

The general synthesis of compounds 14–22 is shown in Scheme
2.29 3S-Methylmorpholine is installed sequentially at the C4 then
C2 positions of trichloro intermediate 26 to generate 29 which
can then be reacted with a range of boronic esters using palladium
mediated cross couplings to generate compounds 14–22. Analo-
gous procedures were used to deliver compounds 6–8 and com-
pounds 10–13. Pteridine compound 9 was synthesized from the
commercially 7-phenylpteridine-2,4-diol using chemistry analo-
gous to that described in Scheme 1.
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Scheme 2. Reagents and conditions: (a) (i) 3S-Methylmorpholine, Hünigs base,
CH2Cl2, 0 �C–rt, 87%; (ii) 3S-methylmorpholine, Hünigs base, DMA, 70 �C, 71%; (b)
selected boronic ester, Pd(PPh3)4, Na2CO3, toluene/ethanol, 140 �C or selected
boronic ester, Pd(PPh3)4, K2CO3, MeCN/water, 150 �C.
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In summary, we have shown how iterative SAR investigations
have been used to optimize the cellular potency, aqueous solubility
and hERG potency of lead compound Ku-0063794 to deliver the
clinical candidate AZD8055. Further optimization focused on
reducing turnover in human hepatocytes and resulted in the iden-
tification of the clinical candidate AZD2014, which was believed to
offer a reduced human PK risk compared to AZD8055. AZD8055
and AZD2014 are potent and selective dual mTORC1 and mTORC2
inhibitors which show a differentiation from rapamycin in vitro
and have demonstrated dose-dependent tumor growth inhibition
in mouse xenograft models. AZD8055 was evaluated in a phase I
clinical study in patients with advanced tumors but is no longer
in clinical development. AZD2014 is currently in phase I.
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