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ABSTRACT: The synthesis, physical properties and calculated 
performances of six stereo- and regioisomeric cyclobutane 
nitric ester materials is described. While the calculated 
performances of these isomers, as expected, were similar, their 
physical properties were found to be extremely different. By 
altering the stereo- and regiochemistry, complete tunability in 
the form of low-or high-melting solids, standalone melt-
castable explosives, melt-castable explosive eutectic 
compounds, and liquid propellant materials were obtained. This 
demonstrates that theoretical calculations should not be the 
main factor in driving the design of new materials, and that 
stereo- and regiochemistry matter when designing compounds 
of potential relevance to energetic formulators. 

In pursuit of designing high-performing energetic 
materials,1 the main criteria today is based on theoretically 
predicted performance properties.2 While a given material’s 
synthetic accessibility and oxygen balance are factors in the 
design of new energetics, historically these molecules have 
been prepared based largely on computer calculated properties 
(density, heat of formation (DH), detonation pressure (Pcj), 
detonation velocity (Vdet), and specific impulse (Isp)). Hence, 
many nitrated derivatives based on various nitrogen- and 
oxygen-rich heterocyclic systems have been synthesized to-
date.3-10 Unfortunately, while many of these legacy materials 
are high-performing based on computational calculations, they 
are plagued by issues such as very high sensitivity, thermal 
instability, moisture sensitivity, and in the case of nitrogen-rich 
energetic salts, an incompatibility with many common 
ingredients in an explosive or propellant formulation mixture. 
For this reason, classic energetics such as the highly sensitive 
primary explosive pentaerythritol tetranitrate (PETN), the 
current state-of-the-art melt-castable explosive trinitrotoluene 
(TNT), and the sensitive liquid plasticizer trimethylolethane 
trinitrate (TMETN) still find common use today (Figure 1a). 
Herein a long-overlooked strategy for the design of useful 
energetic materials is presented in an effort to develop highly 
energetic melt-castable and propellant plasticizing materials. 

Figure 1. (a) Challenges and variables in the design of modern 
energetics; (b) Impacts of stereo- and regiochemistry in medicine 
and fragrances; (c) Platform to interrogate stereo- and 
regiochemistry in energetics. 
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permutations is without precedent. This has largely stemmed 
from the perception that stereo- or regioisomers are not 
advantageous to pursue since the predicted performance 
properties between the isomers will be minimal. Yet the critical 
role of stereo- and regiochemistry is documented in nearly all 
other areas of the chemical enterprise.11 For example, as shown 
in Figure 1b, regioisomers can exhibit drastically different 
physical properties and when recognition events take place with 
chiral receptors, the stereochemistry of a small-molecule binder 
matters.12-13  

Herein, the long-held assumption that stereo- and 
regiochemistry are of little influence in the energetics field is 
challenged with a systematic analysis of a set of cyclobutane-
based nitric esters, differing only in stereo- and regiochemistry 
(Figure 1c). Despite having similar theoretical performance 
properties, this set of isomeric strained molecules exhibits 
remarkable differences in physical properties, tunable by virtue 
of simple stereo- and regiochemical changes. 

Azetidine and cyclobutane moieties tolerate various 
nitration conditions. Due to their ring strain, which further 
increases performance by raising the heat of formation of the 
system, nitro group-bearing materials containing these cores 
have been designed in the past. Two of the most energetic 
materials containing these strained rings are 1,1,3,3-tetranitro 
cyclobutane (TNCB)14 and the melt-castable explosive 
trinitroazetidine (TNAZ).15 TNCB was calculated to possess an 
explosive power in excess of HMX, but unfortunately 
decomposes at 165 ºC, and is hence of little practical value. Like 
TNCB, TNAZ was also calculated to possess an explosive 
performance in excess of HMX, possessing a melting point of 
101-103 ºC and a decomposition temperature of 216 ºC, which 
classifies it as a potential melt-castable explosive material. 
Despite successful efforts to scale TNAZ,16 its vapor pressure 
in the molten state was found to be significantly higher than that 
of the benchmark melt-castable explosive TNT. This presented 
a significant safety and processing hazard, all but ending 
TNAZ’s potential applications as a melt-castable explosive 

 

Scheme 1. Conditions: (a) hv, H2O, rt. (b) 60% Red-Al (5 equiv.), Toluene, 0 to 80 ºC, 16 h. (c) 100% HNO3, 0 ºC to rt (d) t-BuOK (0.3 
equiv.), MeOH, 80 ºC, 24 h. (e) 10 (1 equiv.), Diethyl acetylenedicarboxylate (1 equiv.), PPh3 (1 equiv.), DCM, -15 ºC to rt, 48 h. (f) Pd/C 
(5 mol%), H2, EtOAc, rt, overnight. (g) Maleic anhydride (1 equiv.), 2-butyne-1,4-diol diacetate (1.2 equiv.), acetophenone (0.2 equiv.), hv, 
MeCN, rt, 9 days. (h) NaBH4 (1.03 equiv.), THF, -65 ºC to rt.  (i) Dibromoethane (1 equiv.), Dimethyl malonate (5 equiv.), NaH (4 equiv.), 
DMF, 80 ºC, 24 h. (j) NaI (0.67 equiv.), MeOH, Pt anode, Fe cathode, 100 mA, 6 F/mol. (k) Diethyl malonate (2.04 equiv.), NaH (2 equiv.), 
KI (0.1 equiv.), DMF, 70 to 140 ºC, overnight. (l) 1 M HCl/MeOH (1:6), overnight. 
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material. It was noticed in searching the literature that tetra-
(nitroxymethyl) cyclobutane, nor any of its isomers, had been 
made and thus the physical and energetic properties stemming 
from their stereo- and regiochemistries had not been studied. As 
a result, the tetrasubstituted cyclobutane nitric ester scaffold 1 
was chosen based on its nitrated structure and its ring strain, 
coupled with its ability to introduce stereo- and regiochemistry 
into the structure.    

Scheme 1A outlines the scalable synthesis of all four 
possible meso stereochemical isomers of compound 1 (2-5), as 
well as two constitutional isomers (6-7). To begin, both 
compounds 2 and 3 can be accessed by the photochemical 
dimerization of dimethyl fumarate.17 This yields the head-to-
head dimer 8, in which the ester substituents around the central 
cyclobutane ring have a cis-trans-cis relationship to one 
another. Direct reduction of 8 gave the tetraol, which was 
immediately subjected to nitration to provide 2. Conversely, 8 
could be epimerized under basic conditions18 to afford its all-
trans stereoisomer 9. A similar sequence of reduction and 
nitration furnished the all-trans nitric ester 3.  

To obtain the cis-cis-trans meso stereoisomer, 1019 was 
employed in a 1,4-addition/intramolecular Wittig cyclization20 
cascade to afford 11 as the sole diastereomer. Hydrogenation of 
the cyclobutene set the remaining two stereocenters, which after 
reduction and nitration yielded 4.  

Synthesis of the all-cis stereoisomer 5 proved to be more 
challenging as the route needed to be both highly scalable and 
stereoselective for our purposes. Previous reports for the 
synthesis of the all-cis stereoisomer of 1 commenced from 
acenaphthylene21 (6% overall yield), cyclooctatetraene22 (5% 
overall yield), or 2(5H)-furanone23 (3% overall yield, solid-state 
dimerization at -78 ºC). It was reasoned that intercepting a 
cyclic intermediate of different oxidation state may eliminate 
some of the pitfalls that plagued previous syntheses. After much 
experimentation, acetate-protected 2-butyne-1,4-diol and 

maleic anhydride were found to undergo [2+2] cycloaddition. 
Direct reduction of the crude anhydride to the corresponding 
cyclobutene-lactone to aid in isolation and hydrogenation gave 
the all-cis product 13 as the sole diastereomer (convex approach 
of H2). Lactone 13 was then directly subjected to reduction and 
nitration to give the final meso stereoisomer 5. 

Two constitutional isomers of 1 were also targeted as a 
control to gauge the influence of regiochemistry on the physical 
and energetic properties within the same cyclobutane series 
(Scheme 1B). To that end, dimethyl malonate was alkylated 
with dibromoethane to give 14, in which the major byproduct 
arose from the intermediate mono-addition adduct 
intramolecularly cyclizing to give 1,1-diester cyclopropane.  At 
this point, all initial attempts to cyclize 14 under reported 
bromination/thermal cyclization conditions24 proved entirely 
irreproducible in our hands. Therefore, we instead turned to 
electrochemical methods. Gratifyingly, we found that a slight 
modification to the procedure reported by Elinson et al.25 
cleanly gave the desired 15 in excellent yield under anodic 
conditions (see SI). Two additional steps then gave access to the 
1,1,2,2-tetrasubstituted nitric ester 6. Finally, the 1,1,3,3 
constitutional isomer 7 could be accessed via the known 
compound 1626 after alkylation, acetonide deprotection, 
reduction of the diester, and nitration. 

With cyclobutane isomers 2-7 in hand, each isomer’s 
physical properties and sensitivities to impact, friction and 
electrostatic discharge was determined. These values, along 
with the theoretical energetic properties27, are given in Table 1. 
As expected, based off the experimentally derived densities, the 
calculated detonation velocities, detonation pressures, heats of 
formation and specific impulses of isomers 2-7 were in close 
agreement with one another. It is for this reason that the pursuit 
of stereo- and regioisomeric structures in designing energetic 
materials has historically been dismissed. An examination of 
the physical properties, however, tells a much different story. 

 
Table 1. Physical properties, sensitivities and theoretical performance of isomers 2-7, TNT and TMETN. 

[Blue] = Desirable Melt Castable Properties [Purple] = Desirable Propellant Properties [Red] = Undesirable Properties  

Data category TNT TMETN 2 3 4 5 6 7 

Tm [ºC][a] 80.4 -3 106.0 47.5 <-40 100.8 85.9 146.9 
Tdec [ºC][b] 295.0 182.0 198.5 199.7 186.8 194.3 192.8 196.2 
ΩCO2 [%][c] -74 -34.5 -44.9 -44.9 -44.9 -44.9 -44.9 -44.9 
ΩCO [%][d] -24.7 -3.1 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 
ρ  [gcm-3][e] 1.65 1.47 1.64 1.605 1.543 1.66 1.683 1.651 
Pcj [GPa][f] 19.3 23.7 24.5 22.9 24.5 24.5 24.6 24.4 

Vdet [ms-1][g] 6950 7050 7438 7544 7577 7504 7604 7472 
Isp [s][h] - 247.0 240.5 238.7 240.4 242.5 243.6 240.6 

ΔfH° [kJ mol–1][i] -59.3 -425.0 -510.1 -535.9 -512.0 -480.8 -465.5 -509.2 
IS[j] [J] 15 0.2028 6.2 6.2 9.0 6.2 4.7 6.2 

FS[k] [N] 240 - 240 240 >360 240 >360 >360 
ESD[l] [J] 0.25 - 0.125 0.125 0.125 0.125 >0.25 >0.25 

[a] Tm = onset temperature of melting; [b] Tdec = onset temperature of decomposition; [c] ΩCO2 = CO2 oxygen balance; [d] ΩCO = CO oxygen balance; [e] 
ρ = derived density from X-ray data; [f] Pcj = detonation pressure; [g] Vdet = detonation velocity; [h] Isp = specific impulse; [i] ΔfH° = molar enthalpy of 
formation; [j] IS = impact sensitivity; [k] FS = friction sensitivity; [l] ESD = electrostatic discharge sensitivity 
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While melt-castable explosive candidates typically need to 
exhibit a minimum temperature difference of 75 ºC between 
melting and decomposition temperatures and melt between 80-
125 ºC, the all-trans cyclobutane isomer 3 is a low-melting 
energetic solid. Thus, its 47.5 ºC melting point is too low to be 
considered a met-castable explosive. On the other hand, the all-
cis and cis-trans-cis cyclobutane isomers 5 and 2 both possess 
melting and decomposition temperatures that allow them to find 
potential use in melt-castable explosive eutectic formulations. 
While 5 and 2 possess melting points slightly above 100 ºC, 
these materials can be formulated with other high-energy 
energetic compounds to form a melting point between 80-95 ºC. 
This melting point range is ideal for melt-castable explosive 
operations because it allows for steam heating to be employed 
at ambient pressure during a casting operation, reducing 
operating costs. In examining the cyclobutane regioisomers, 7 
possesses too high of a melting point to be of practical value in 
the melt-castable explosive arena. However, 6 exhibits a 
melting point that fits well in the standalone melt-castable 
range. Like TNT, 6 does not need to be mixed with anything to 
further depress the melting point for casting operations to occur. 
It is worth noting that melt-castable candidates 2, 5 and 6 
possess detonation pressures that are ca. 25% more powerful 
than TNT, exceeding the explosive power of the state-of-the-art 
melt-castable ingredient by a wide margin. Furthermore, 2, 5 
and 6 possess equivalent or lower friction sensitivities than 
TNT. Although these three tetranitric ester materials have 
higher impact sensitivities than TNT, 6 is still less sensitive to 
impact than the commonly manufactured PETN (3 J), while 2 
and 5 possess identical impact sensitivities to the ubiquitous 
explosive RDX (6.2 J). The 0.125 J electrostatic discharge 
sensitivity of 2, 5 and 6 is also equal to that of RDX. Thus, 
possessing sensitivities that are equal to or lower than 
commonly handled explosive materials demonstrates that these 
melt-castable tetranitric ester candidates are safe to handle. 

Surprisingly, cis-cis-trans isomer 4 is distinct from the other 
cyclobutane tetranitric ester isomers in that it is a liquid, and 
can thus be classified as a potential energetic plasticizer 
ingredient for potential use in propellant formulations. As 
presented in Table 1, 4 was found to possess a significantly 
lower sensitivity to impact, yet possesses a higher density than 
the propellant plasticizer TMETN.28 Although TMETN 
possesses a slightly higher specific impulse compared to 4, it 
has a relatively high freezing point of -3 ºC. Strikingly 4, which 
differs from 2 (m.p. 106 ºC) by a single stereocenter, did not 
freeze even at -40 ºC. The low freezing point of 4 offers 
significant potential benefits with regard to propellant 
formulation capabilities, such as forming high-energy freezing 
point eutectic materials that are not currently possible with 
TMETN. It thus appears that by taking advantage of the stereo- 
and regiochemistry of a given CHNO molecule, it is possible to 
develop an entirely tunable energetic system that can potentially 
serve energetics formulators in both the explosives and 
propellants field. 

In summary, it has been demonstrated that stereo- and 
regiochemistry should play a significant role in the design of 
new energetic materials and should not be dismissed on 
theoretical grounds. Depending on the stereochemistry and 
regiochemistry employed, tunable molecules were designed 
that gave rise to low-melting solids, standalone melt-castable 

explosives, melt-castable explosive eutectic compounds, high-
melting solid materials, and extreme low-melting liquid 
materials. Such tunability has the potential to cater to both the 
explosives and propellants community. 
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