

S0960-894X(96)00045-8

DERIVATIVES OF 2-ARYLCYCLOPROPYLAMINE: SYNTHESIS AND INTERACTIONS WITH 5-HT_{1A} RECEPTORS.

Ulf Appelberg,¹ Nina Mohell,² and Uli Hacksell^{1,*}

¹Department of Organic Pharmaceutical Chemistry, Uppsala Biomedical Center, Box 574, Uppsala University, S-751 23 Uppsala, Sweden

²Department of Molecular pharmacology, Preclinical R&D, Astra Arcus AB, S-151 85 Södertälje, Sweden

Abstract: A series of *cis*- and *trans*-derivatives of 2-aryl-*N*,*N*-dipropylcyclopropylamines and 1-(2-arylcyclopropyl)-*N*,*N*-dipropylmethylamines were synthesized and evaluated for affinity at the 5-HT_{1A} receptor. The key step in the syntheses was a cyclopropanation of *cis*- and *trans*-3-arylpropenoic esters with diazomethane which proceeds with retention of the stereochemistry. *cis*-1-[2-(3-Methoxyphenyl)cyclopropyl]-*N*,*N*-dipropylmethylamine (**32**) had the highest 5-HT_{1A}-receptor affinity (K_i= 58 nM) of the novel derivatives.

The *trans*-2-arylcyclopropyl derivatives 1 - 4 have been characterized as potent 5-HT_{1A} receptor agonists on the basis of *ex vivo* biochemical and behavioural studies in rats.¹ In contrast, the 4-hydroxy (5) or 3,4dihydroxy (6) substituted derivatives appeared to be unable to stimulate the 5-HT_{1A} receptors. The activity of 1 and 2 resides predominantly in the 1*R*,2*S* enantiomers.^{1,2}

In order to further explore the structure-activity relationships in the arylcyclopropylamine series, we have now synthesized the *cis*- and *trans*-isomers of a series of homologues having the cyclopropane ring and the nitrogen separated by one methylene group (Table 1).³ In addition, we have synthesized compounds **27** and **28** (Table 1), the *cis*-diastereoisomers of **3** and **4**. The compounds were evaluated for their ability to compete for [³H]-8-OH-DPAT labelled 5-HT_{1A} receptors in rat brain hippocampal membranes (Table 3).

The *trans* derivatives 9 - 11 were prepared from the previously reported¹ carboxylic acids 7 and 8 (Scheme 1); the corresponding acid chlorides were treated with diethylamine or dipropylamine and the resulting amides were reduced with LiAlH₄ (Method A). Demethylation of 9 - 11 with BBr₃ (Method B) provided phenols 12 - 14.

Compd	Relative stereochem	R ¹	\mathbb{R}^2	Prepn method	Yield %	Recrystn ^a solvent	°C °C	Formula ^b
6	trans	2-MeO	CH ₂ NPr ₂	A	61	1	96.5-98	C ₁₇ H ₂₇ NO·HCl
9	trans	2-MeO	CH ₂ NEt ₂	A	84	2	118-120	C ₁₅ H ₂₃ NO·HCI
Ξ	trans	3-MeO	CH ₂ NPr ₂	A	76	2	92-93	C ₁₇ H ₂₇ NO·HCI
12	trans	2-OH	CH ₂ NPr ₂	В	73		oil	C ₁₆ H ₂₅ NO·C ₂ H ₂ O ₄
[]	trans	2-OH	CH ₂ NEt ₂	B	81		oil	C ₁₄ H ₂₁ NO·C ₂ H ₂ O ₄ ·1/4 H ₂ O
4	trans	3-OH	CH ₂ NPr ₂	В	84	2	119.5-120.5	C ₁₆ H ₂₅ NO·C ₂ H ₂ O ₄
I	cis	2-MeO	СООН	U	46	3	144-145	C ₁₁ H ₁₂ O ₃
3	cis	3-MeO	СООН	C	53	J	92-93d	C ₁₁ H ₁₂ O ₃
3	cis	2-MeO	$\rm NH_2$	D	63	2	178-180	C ₁₀ H ₁₃ NO·HCI
7	cis	3-MeO	$\rm NH_2$	D	71	2	118-121.5	C ₁₀ H ₁₃ NO·C ₂ H ₂ O ₄
5	cis	2-MeO	NPr_2	ш	62	J	135-138	C ₁₆ H ₂₅ NO·HCI
80	cis	3-MeO	NPr ₂	Щ	46	J	90-93.5	C ₁₆ H ₂₅ NO·HCI
6	cis	2-MeO	CH ₂ NPr ₂	Α	50	2	115.5-117.5	C ₁₆ H ₂₅ NO-C ₂ H ₂ O ₄
9	cis	3-MeO	CH ₂ NPr ₂	Α	37	4	78-80.5	C ₁₇ H ₂₇ NO-C ₂ H ₂ O ₄
11	cis	2-OH	CH ₂ NPr ₂	В	94		oil	C ₁₆ H ₂₅ NO·C ₂ H ₂ O ₄ ·1/2 H ₂ O
2	cis	3-OH	CH ₂ NPr ₂	В	49	5	159-161	C ₁₆ H ₂₅ NO·C ₂ H ₂ O ₄

Table 1. Physical data of some racemic arylcyclopropane derivatives.

R¹ MR²

Scheme 1

Reagents: (a) (i) (COCl)₂, Pr₂NH or Et₂NH, toluene, r.t., (ii) LiAlH₄, THF, 80 °C; (b) BBr₃.

The synthesis of the *cis*-derivatives is described in Schemes 2 and 3; 2- and 3-methoxyacetylene (**15** and **16**) were prepared in 76 and 60 % yield, respectively, from 2- and 3-iodoanisole by a palladium catalyzed coupling with trimethylsilylacetylene⁵ followed by removal of the trimethyl silyl group by treatment with KOH. Treatment of **15** and **16** with BuLi (THF, -70 °C) followed by addition of dimethyl carbonate provided the methyl propiolates **17** and **18** in 89 and 64 % yield, respectively (Scheme 3).

Scheme 2

Reagents: (a) (i) trimethylsilylacetylene, Et₃N, (PPh₃)₂PdCl₂, CuI, r.t., (ii) 1M KOH, MeOH, r.t.

Hydrogenation of **17** and **18** over Pd(CaCO₃) poisoned with 3.5 % Pb (Lindlar catalyst)⁶ gave stereoselectively (*cis/trans* ratios were 10:1 and 19:1, respectively) the corresponding methyl propenoates **19** (91 %) and **20** (86 %). Compound **20**, but not **19**, could be purified to homogeneity by flash chromatography. However, after cyclopropanation of **19** with diazomethane under palladium catalysis (Scheme 3, Method C),⁷ the isomeric impurity could be removed. The cyclopropanation of *cis*-derivatives **19** and **20** was efficient and produced only slightly lower yields than that of the corresponding *trans*-isomers.¹ The cyclopropanated products were isolated as the carboxylic acids (**21** and **22**, repectively) following alkaline hydrolysis of the ester function. Curtius rearrangement (Method D)⁸ of **21** and **22** smoothly gave the primary amines **23** and **24**. A comparison of the coupling constants in the ¹H NMR spectra of **23** and **24** with those of the corresponding *trans* derivatives (**25** and **26**)¹ unambiguously established the *cis*-stereochemistry (Table 2).

	$\begin{array}{c} H_{c} \\ H_{d} \\ H_{b} \\ H_{d} \\ H_{d} \\ H_{d} \\ H_{a} \end{array}$			$ \begin{array}{c} H_{c} \\ H_{a} \\ H_{b} \\ \hline H_{d} \\ H_{d} \\ H_{3} \\ H_{3$					
δa	δ _b	δ _c	δ _d	J _{ab}	J _{ac}	J _{ad}	J _{bc}	J _{bd}	J _{cd}
2.95 2.91 2.52 2.35	2.36 2.46 2.75 2.82	1.21 1.29 1.35 1.40	1.38 1.36 1.31 1.30	7.9 7.9 3.5 3.6	4.2 4.4 10.1 10.1	7.3 7.4 6.8 6.7	7.3 7.5 4.4 4.4	9.2 9.3 7.8 7.8	-6.8 -6.8 -6.6 -6.7
	δ_a 2.95 2.91 2.52 2.35	$\begin{array}{c} \text{Ar} \\ \text{H}_{b} \\ \text{2} \\ \end{array}$	$\begin{array}{c} & H_{c} \\ Ar \\ H_{b} \\ H_{d} \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2. ¹H NMR Spectroscopic Data of some cis- and trans-2-Arylcyclopropylamines.

^aHydrochloride salt. ^bSalt with oxalic acid. ^cData from ref. 1.

N,*N*-Dipropylation of 23 and 24 (Method E) gave 27 and 28, respectively. Attempts to O-demethylate 27 and 28 with BBr₃ or 48 % aqueous HBr, were unsuccessful because of decomposition of the *cis*-arylcyclopropylamine moiety. The *cis*-1-[2-(methoxyphenyl)cyclopropyl]methylamine derivatives 29 and 30 were prepared from 21 and 22 by Method A. Methoxy derivatives 29 and 30 were conveniently O-demethylated by treatment with BBr₃ (Method B).

Scheme 3

Reagents: (a) H₂, Pd(CaCO₃) + 3.5 % Pb, quinoline, toluene, r.t.; (b) (i) CH₂N₂, Pd(OAc)₂, CH₂Cl₂, 0 °C, (ii) NaOH, H₂O, MeOH, THF, r.t.; (c) (i) Et₃N, EtOCOCl, acetone, -10 °C, (ii) NaN₃, -10 °C, (iii) Δ (100 °C), (iv) *t*-BuOH, 90 °C, (v) HCl, H₂O, 100 °C, (d) PrI, K₂CO₃, acetonitrile, r.t.; (e) (i) (COCl)₂, Pr₂NH, toluene, r.t., (ii) LiAlH₄, THF, 80 °C; (f) BBr₃.

 \mathbb{R}^1 \mathbb{A}^2

Compd	Relative stereochem	R ¹	R ²	$K_i (nM)^{a,b}$	SEM
(1 R ,2S)-1 ^c	trans	2-OH	NPr ₂	4.9	
(1 R ,2S)-2 ^c	trans	3-OH	NPr ₂	2.6	
(1 R ,2S)-3 ^c	trans	2-MeO	NPr ₂	17	
(±)-9	trans	2-MeO	CH_2NPr_2	239	± 32
(±)-10	trans	2-MeO	CH_2NEt_2	431	± 94
(±)-11	trans	3-MeO	CH ₂ NPr ₂	310	± 34
(±)-12	trans	2-OH	CH ₂ NPr ₂	752	± 47
(±)-13	trans	2-OH	CH ₂ NEt ₂	506	± 24
(±)-14	trans	3-OH	CH ₂ NPr ₂	186	± 11
(±)-27	cis	2-MeO	NPr ₂	>10000	
(±)-28	cis	3-MeO	NPr ₂	736	± 110
(±)-29	cis	2-MeO	CH ₂ NPr ₂	998	± 43
(±)-30	cis	3-MeO	CH_2NPr_2	388	± 99
(±)- 3 1	cis	2-OH	CH ₂ NPr ₂	379	± 71
(±)-32	cis	3-OH	CH ₂ NPr ₂	58	± 6.5

Table 3. Affinities of some arylcyclopropane derivatives for 5-HT_{1A} receptors.

^aInhibition of specific [³H]-OH-DPAT binding at 5-HT_{1A} receptors in rat hippocampal membranes. ^bn= 2-4. ^cData obtained from ref 9, included for comparison.

The affinity of the novel derivatives was lower (32) or much lower than that of the previously reported¹ arylcyclopropylamines (1R, 2S)-1 - 3 (Table 3).⁹ Thus, it appears that a *cis*-configuration of the arylcyclopropylamine moiety positions the arylethylamine chain in a conformation which is unfavourable for an efficient interaction with the 5-HT_{1A} receptor binding site. Alternatively, or in addition, the steric bulk of the cyclopropane ring may prevent an optimal receptor interaction. The low affinity of the *trans*-substituted dialkylaminomethyl derivatives reflects the importance for a relatively short distance between the aromatic ring and the basic nitrogen.¹⁰

The racemic *cis*-derivative **32** had a K_i value of 58 nM and was the most potent 5-HT_{1A} receptor ligand of the novel derivatives. This was not surprising because the aromatic ring, the hydroxyl group and the nitrogen of either enantiomer of **32** may be superimposed onto the same structural elements of the potent (1*R*,2*S*)-1 when it adopts a proposed bioactive conformation.^{10,11} It should be noted, however, that preliminary molecular mechanics (MMX) calculations indicate that the fitted conformations of **32** are energetically disfavoured. Acknowledgement: This work was supported by the Swedish Board for Industrial and Technical Development. We thank Gun Torell Svantesson for help with the receptor binding assay.

References and notes

- Arvidsson, L. -E.; Johansson, A. M.; Hacksell, U.; Nilsson, J. L. G.; Svensson, K.; Hjort, S.; Magnusson, T.; Lindberg, P.; Andersson, B.; Sanchez, D.; Wikström, H.; Sundell, S. J. Med. Chem. 1988, 31, 92-99.
- Cornfield, L. J.; Lambert, G.; Arvidsson, L.-E.; Mellin, C.; Vallgårda, J.; Hacksell, U.; Nelson, D. L. Mol. Pharmacol. 1991, 39, 780-787.
- 3. All new compounds were fully characterized by ¹H-NMR (270 Mz) and ¹³C-NMR (67.5 Mz) spectroscopy and the elemental analyses were within 0.4 % of the theoretical values.
- 4. Daniewski, A. R.; Kowalczyk-Przewloka, T. J. Org. Chem. 1985, 50, 2976-2980.
- 5. Oliver, R.; Walton, D. R. M. Tetrahedron Lett. 1972, 51, 5209-5212.
- 6. Lindlar, H. Helv. Chim. Acta 1952, 57, 446-450.
- (a) Paulissen, R.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1972, 15, 1465-1466. (b) Mende, U.; Radüchel, B.; Skuballa, W.; Vorbrüggen, H. A. Tetrahedron Lett. 1975, 629-632.
- 8. Nichols, D. E.; Toth, J. E. J. Med. Chem. 1978, 21, 395-397.
- 9. Vallgårda, J.; Appelberg, U.; Arvidsson, L.-E.; Hjorth, S.; Svensson, B. E.; Hacksell, U. Submitted to J. Med. Chem.
- Mellin, C.; Vallgårda, J.; Nelson, D. L.; Björk, L.; Yu, H.; Andén, N.-E.; Csöregh, I.; Arvidsson, L.-E.; Hacksell, U. J. Med. Chem. 1991, 34, 497-510.
- 11. Arvidsson, L.-E.; Karlén, A.; Norinder, U.; Kenne, L.; Sundell, S.; Hacksell, U. J. Med. Chem. 1988, 31, 212-221.

(Received in Belgium 21 September 1995; accepted 16 January 1996)