DIASTEREOSELECTIVE SYNTHESIS OF TRIACETYL-L-erythro-C18-SPHINGOSINE

Okiko MIYATA,^a Sayaka YAMAGUCHI,^a Ichiya NINOMIYA,^a Takeaki NAITO, *, ^a and Kimio OKAMURA^b

Kobe Pharmaceutical University,^a Motoyamakita, Higashinada, Kobe 658, Japan Analytical Research Laboratory, Tanabe Seiyaku, Co. Ltd.,^b Kashima, Yodogawa, Osaka 532, Japan

A new stereoselective synthetic route to triacetyl-L-*erythro*-C18-sphingosine has been developed by the combination of diastereoselective addition of thiophenol to chiral olefins and subsequent intramolecular substitution of the corresponding sulfonium group.

KEY WORDS sphingosine; thiophenol; nucleophilic addition; asymmetric synthesis; oxazoline

Sphingosine is the backbone component of various sphingolipids which are constituents of cell membranes. Merrill $et\ al.^{2}$) reported that C18-sphingosine showed a potent inhibitory activity for protein kinase C. Because of the biological importance of sphingolipids, a great deal of effort has been devoted to the synthesis of optically active sphingosines. We now provide a new method for the construction of two contiguous stereogenic centers at the C2-and C3-positions of sphingosine by demonstrating asymmetric synthesis of triacetyl-L-erythro-C18-sphingosine (1). Our synthetic strategy consists of two crucial reactions, diastereoselective nucleophilic addition of thiophenol (4 \rightarrow 5) to the dehydroamino acid esters having a (-)-8-phenylmenthyl group and stereoselective intramolecular displacement reaction of the corresponding sulfonium group (7 \rightarrow 8).

$$CH_3(CH_2)_{12}$$
 OH $CH_3(CH_2)_{12}$ OR $CH_3(CH_2)_{12}$ OR $CH_3(CH_2)_{12}$ OR

D-erythro-C18-sphingosine

R=H: L-erythro-C18-sphingosine

Achiral dehydroamino acid esters 2a, $b^{5,6}$) were treated with (-)-8-phenylmenthol (3) in the presence of trimethyl aluminum in THF at -60°C to give the chiral dehydroamino acid esters 4a, b^{7} in 55-61% yield. We investigated the addition reaction of thiophenol to the dehydroamino acid esters 4a, b. The chiral dehydroamino acid ester 4a was treated with 7 eq. of thiophenol in the presence of 3 eq. of lithium thiophenoxide in toluene at -78°C to give the (2R, 3S)-adduct $5a^{8}$) with high diastereoselectivity (5a: its diastereomer = 92: 8) in 94% yield, while the addition reaction of thiophenol to 4a in THF gave a 2: 1 mixture of the adduct 5a and its diastereomer in 68% yield. Similarly, 4b underwent diastereoselective addition of thiophenol in toluene to give $5b^{8}$) as major product (5b: its diastereomer = 86: 14) in 99% yield. The mechanism for the above diastereoselective addition of thiophenol is proposed as follows. The starting chiral olefins 4a, b would take s-trans conformation A. Lithium thiophenoxide would attack from a

March 1996 637

convex β -face of the α,β -unsaturated ester group to form the enolate B, which is then protonated from α -face due to the stereoelectronic effect⁴) of the newly introduced sulfur group to give the (2R, 3S)-adducts 5a, b.

Then, **5a**, **b** were treated with 10 eq. of lithium aluminum hydride in THF at 0°C to give the optically active alcohols **6a**, **b** in 91-93% yield along with the efficient recovery of the valuable auxiliary. S-Alkylation of the corresponding acetates **7a**, **b** with methyl iodide in the presence of silver perchlorate followed by treatment of the resulting sulfonium salts with potassium carbonate gave the *cis*-oxazoline **8a**, **b** ¹⁰⁾ as a sole product in 62-70% yield. Hydrolysis of **8a**, **b** with HCl and the subsequent acetylation of the resulting amino alcohols gave the triacetyl compounds **9a**, **b** in 65-79% yield. **9b** was converted into **10** *via* hydrolysis (10% KOH), methoxymethylation (MOMCl-(*i*-Pr)₂EtN), and debenzylation (10% Pd-C/H₂) in 51% overall yield from **9b**. Finally, according to Kitagawa's procedure, ^{3c)} **10** was smoothly converted into triacetyl-L-*erythro*-C18-sphingosine **1** *via* Swern oxidation, Wittig reaction, hydrolysis, photoisomerization, and acetylation. The physical and spectral data of **1** ([α]_D²⁷ +12.9° (α =0.31, CHCl₃) were identical with those ([α]_D²³ +12.1° (α =1.1, CHCl₃) reported in the literature. Since **1** had previously been transformed into L-*erythro*-C18-sphingosine, the present method provides a new asymmetric synthesis of L-*erythro*-C18-sphingosine.

ACKNOWLEDGEMENTS We wish to thank the Ministry of Education, Science and Culture (Japan) and the Science Research Promotion Fund of the Japan Private School Promotion Foundation for research grants.

REFERENCES AND NOTES

- 1) Hakomori S., "Sphingolipid Biochemistry", in Handbook of Lipid Research, Vol. 3, ed. by Kaufer J. N., Hakomori S., Plenum Press, New York, 1983.
- 2) Merrill A. H., Nimkar S., Menaldino D., Hannum Y. A., Loomis C., Bell R. M., Tyagi S. R., Lambeth J. D., Stevens V. L., Hunter R., Liotta D. C., *Biochemistry*, 28, 3138-3145 (1989).

638 Vol. 44, No. 3

3) For previous syntheses of sphingosines: a) Somfai P., Olsson R., Tetrahedron, 49, 6645-6650 (1993). b) Hirata N., Yamagiwa Y., Kamikawa T., J. Chem. Soc., Perkin Trans. 1, 1991, 2279-2280. c) Shibuya H., Kawashima K., Narita N., Ikeda M., Kitagawa I., Chem. Pharm. Bull., 40, 1154-1165 (1992). d) Takano S., Iwabuchi Y., Ogasawara K., J. Chem. Soc., Chem. Commun., 1991, 820-821, and references cited therein. e) Solladie-Cavallo A., Koessler J. K., J. Org Chem., 59, 3240-3242 (1994). f) Dondoni A., Fantin G., Fogagnolo M., Pedrini P., J. Org. Chem., 55, 1439-1446 (1990). g) Nakagawa M., Tsuruoka A., Yoshida J., Hino T., J. Chem. Soc., Chem. Commun., 1990, 603-605. h) Garner P., Park J. M., Malechi E., J. Org. Chem., 53, 4395-4398 (1988). i) Herald P., Helv. Chim. Acta, 71, 354-362 (1988). j) Nimkar S., Menaldino A., Merrill. H., Liotta D., Tetrahedron Lett., 29, 3037-3040 (1988). k) Koskinen A. M. P., Krische M. J., Synlett., 1990, 665-666, and references cited therein. l) Hudlicky T., Nugent T., Griffith W., J. Org. Chem., 59, 7944-7946 (1994). m) Katsumura S., Yamamoto N., Fukuda E., Iwama S., Chemistry Lett., 1995, 393-394, and references cited therein. n) Jefford C. W., McNulty J., Lu Z.-H., J. Chem. Soc., Chem. Commun., 1995, 123-124.

- a) Miyata O., Shinada T., Ninomiya I., Naito T., Date T., Okamura K., Inagaki S., J. Org. Chem., 56, 6556-6564 (1991).
 b) Miyata O., Shinada T., Ninomiya I., Naito T., Tetrahedron Lett., 32, 3519-3522 (1991).
 c) Miyata O., Shinada T., Kawakami N., Taji K., Ninomiya I., Naito T., Date T., Okamura K., Chem. Pharm.
 Bull., 40, 2579-2581 (1992).
 d) Miyata O., Fujiwara Y., Ninomiya I., Naito T., J. Chem. Soc., Perkin Trans. 1.,
 1993, 2861-2862.
 e) Miyata O., Shinada T., Naito T., Ninomiya I., Date T., Okamura K., Tetrahedron, 49,
 8119-8128 (1993).
- 5) Scott J. W., Keith D. D., Nix G. Jr., Parrish D. R., Remington S., Roth G. P., Townsend J. M., Valentine D. Jr., Yang R., J. Org Chem., 46, 5086-5093 (1981).
- 6) a) Schmidt U., Lieberknecht A., Wild J., Synthesis, 1984, 53-60. b) Schmidt U., Griesser H., Leitenberger V., Lieberknecht A., Mangold R., Meyer R., Riedl B., Synthesis, 1992, 487-490.
- 7) Cativiela C., Diaz de Villegas M. D., Galvez J. A., Synthesis, 1990, 198-199.
- 8) The absolute configurations of the adducts 5a, b were determined as follows. The relative configuration of the newly formed two chiral centers of 5a was firmly established by X-ray crystallography of 9a, prepared from 5a. ¹H-NMR spectral data of 5b are very close to that of 5a except for signals due to O-alkyl group. The absolute configurations of 5a, b were established by the chemical conversion of 5b into the tetraacetyl derivative 11 ([α]_D²² -23.7° (c=0.76, CHCl₃)), which was identical with the authentic sample ([α]_D²² -23.4° (c=1.37, CHCl₃)), obtained readily from the chiral vinylglycinol 12. The stereochemistries of minor diastereomers have not been established.

Crystal data of 9a: $C_{11}H_{19}NO_6$, space group P1 with a=7.966 (1), b=8.957 (1), c=4.964 (1) Å, V=347.47 (1) Å³. Final R value was 0.028 for 1029 reflections.

- 9) Corey E. J., Ensley H. E., J. Am. Chem. Soc., 97, 6908-6911 (1975).
- 10) The stereostructures of 8a, b were confirmed by their ¹NMR spectral characteristics; ¹¹⁾ 8a: $J_{4,5} = 10$ Hz; 8b: $J_{4,5} = 9.5$ Hz.
- 11) Bongini A., Gardillo G., Orena M., Sandri S., Tomasini C., J. Chem. Soc., Perkin Trans. 1, 1985, 935-939.

(Received February 1, 1996; accepted February 15, 1996)