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Abstract. Potassium 2-oxo-3-enoates, which are readily 
prepared at scale and easily stored, have been found to be 
effective and versatile surrogates for α,β-unsaturated 
aldehydes in NHC-catalyzed asymmetric reactions. 
Promoted by chiral N-heterocyclic carbenes combined with 
LiCl, these easy-to-handle solid salts could release of CO2 
and then undergo asymmetric reactions via homoenolate 
and α, β-unsaturated acyl azolium intermediate. The 
reactions have broad substrate scopes with high 
enantioselectivities. 

Keywords: asymmetric catalysis; N-heterocyclic carbine; 
surrogate; α,β-unsaturated aldehyde; 2-oxo-3-enoates  

Asymmetric catalysis has attracted extensive and 

continuous attention in past decades and has proven 

to be the most efficient strategy for constructing 

enantiomerically enriched molecules, which are 

widely applied in biological, pharmaceutical, and 

material sciences.[1] N-Heterocyclic carbenes (NHCs), 

are among the most important organocatalysts and 

have been widely used in asymmetric catalysis.[2] α,β-

Unsaturated aldehydes are commonly employed 

precursors that provide access to a range of 

structurally diverse polyfunctionalized molecules.[3] 

Especially, numerous bioactive compounds[4] and 

natural products[5] have been efficiently constructed 

using α,β-unsaturated aldehydes. Despite the 

significance of α,β-unsaturated aldehydes, some 

encounter drawbacks due to their inherent 

characteristics. For instance, cinnamaldehyde must be 

purified before use due to being easily oxidized in air. 

Furthermore, common synthetic approaches to α,β-

unsaturated aldehydes suffer from multiple synthetic 

steps,[6] harsh conditions,[7] or the use of expensive 

transition metals as catalysts.[8] Additionally, the 

dimerization of α,β-unsaturated aldehydes cannot be 

avoided as a side reaction under NHC catalysis.  

 

Figure 1. Surrogates for α, β-unsaturated aldehyde 

promoted by carbene. 

Therefore, the development of easily prepared and 
stable surrogates for α,β-unsaturated aldehydes has 
long been highly desirable. In 2009, the Bode group[9] 
developed air-insensitive α′-hydroxyl enones[10] as 
suitable surrogates for α,β-unsaturated aldehydes, 
which gave excellent results using a racemic 
triazolium precatalyst. However, a chiral NHC 
precursor gave the desired products in lower yields, 
perhaps due to the sterically bulky group (2-
hydroxypropan-2-yl) adjacent to the carbonyl group 
in the enone hindering attack of the chiral NHC 
precursor at the carbonyl group. Inspired by this work, 
we envisioned installing a smaller activated group 
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near the reactive site (carbonyl group) to overcome 
this steric problem. Herein, we develop potassium 2-
oxo-3-enoates as outstanding surrogates for α,β-
unsaturated aldehydes, especially when applied to 
chiral NHC-catalyzed asymmetric reactions (Figure 
1). 

Potassium 2-oxo-3-enoates, of which ester forms 
are commonly used as Michael acceptors in organic 
synthesis,[11] can be easily prepared at scale in good 
to high yields from commercially available aldehyde 
and pyruvic acid using KOH in MeOH.[12] Notably, 
these solid salts can be easily purified by 
recrystallization, with no need for silica gel column 
chromatography. 

Table 1. Screening of reaction conditions for the reaction 

of 1a with 2a. [a] 

 

[a] Standard condition: NHC precursor (10 mol%), 1a (1.5 

equiv), 2a (0.2 mmol), DBU (0.5 equiv), LiCl (2.0 equiv), 

solvent (2.0 mL), MgSO4 (10 mg), 0oC-rt, 40h. [b] Without 

LiCl. [c] Isolated yields after column chromatography. [d] 

Diastereomeric ratio of 3a, determined via 1H NMR 

analysis of unpurified reaction mixtures. [e] Determined via 

chiral phase HPLC analysis. Diox.= 1,4-dioxane 

We selected the reaction of readily available 
potassium (E)-2-oxo-4-phenylbut-3-enoate (1a) and 
enone[13] 2a as the model reaction for optimizing 
conditions. The key results of reaction optimization 
are summarized in Table 1. Initial attempts were 
unsuccessful, with no desired product afforded when 

Table 2. Scope of salts 1 and enones 2.[a] 

 

[a] Conditions as in Table 1, entry 13; Yields of isolated 

products based on 2. The dr and er of 3 was determined by 

HPLC analysis on a chiral column. [b] Conditions as in 

Table 1, entry 2. [c] Conditions as in Table 1, entry 10. [d] 

Conditions: NHC precursor A (30 mol%),  DBU (2.0 

equiv), LiCl (2.0 equiv), THF (2.0 mL), MgSO4 (10 mg), rt. 

triazolium NHC precursor A was employed in the 
presence of DBU in THF at room temperature (entry 
1), perhaps due to the low reactivity of 1a. We 
envisioned that addition of Lewis acid LiCl[14],[15] 
could significantly increase the reactivity of the 
carbonyl group in 1a via coordination. Indeed, with 
the addition of two equivalents of LiCl, the reaction 
proceeded smoothly to give the desired cascade 
product, cyclopentene 3a, in 69% yield with 3.2:1 dr. 
To our delight, when using sterically hindered 
aminoindanol-derived triazolium NHC precursor B, 
pioneered by Bode,[16] the desired cyclopentene 
product, 3a, was obtained in acceptable yield (60%) 
with excellent enantioselectivity (98:2 er), albeit with 
lower diastereoselectivity (1.4:1 dr) (entry 3). This 
result demonstrated that salts 1 could be a suitable 
surrogate for α,β-unsaturated aldehydes in NHC-
catalyzed asymmetric reactions. Next, several bases 

Entry NHC Base Sol. Yield 

[%][c] 

dr[d] ee[e] 

1
[b]

 A DBU THF nd - - 

2 A DBU THF 69 3.2:1 - 

3 B DBU THF 64 1.4:1 98:2 

4 B NaOAc THF 56 1.6:1 99:1 

5 B DIPEA THF 56 1.4:1 99:1 

6 B Cs2CO3 THF 53 1.5:1 98:2 

7 C DBU THF 51 2.1:1 99:1 

8 D DBU THF 32 2.8:1 98:2 

9 E DBU THF 51 1.9:1 99:1 

10 F DBU THF 60 4.9:1 96:4 

11 F DBU DMF 52 3.9:1 93:7 

12 

13 
F 

F 

DBU 

DBU 

Diox. 

THF:

Diox.

=1:1 

73 

73 

3.4:1 

4.7:1 

94:6 

95:5 
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were investigated, with DBU proving to be the best 
choice (entries 3–6). Furthermore, investigations into 
triazolium NHC precursors showed that NHC 
precursor F, with an N-2,6-diMeOC6H4 moiety,

[17] 

gave the desired product in 60% yield with up to 
4.9:1 dr and a small drop in enantioselectivity (entries 
6–10). Finally, when using a THF and dioxane (1:1) 
as a mixed solvent, 3a was afforded in 73% yield 
with 4.7:1 dr and 95:5 er. 

Table 3. Scope of salts 1 and isatins 4. [a] 

 

[a] Scope of the reaction. Reaction conditions: 1 (1.5 equiv), 

4 (0.2 mmol), B (20 mol%), DBU (0.5 equiv), LiCl (2 

equiv), THF (2 mL), 4Å MS (20 mg), rt. Yields of isolated 

products based on 4. The dr and er of 5 was determined by 

HPLC analysis on a chiral column. 

With optimized conditions in hand (Table 1, entry 
13), we next evaluated the reaction scope for 
potassium 2-oxo-3-enoates 1 and enones 2 (Table 2). 
When salts 1 with γ-aryl substituents were used, both 
electron-rich and electron-deficient moieties could be 
placed on the aryl group (3a–j). Notably, salts 1 
bearing γ-heteroaryl substituents were effective, 
giving higher diastereoselectivities in most cases (3f–
i). Delightingly, a salt with a γ-alkyl substituent was 
also a suitable substrate for this transformation, albeit 
achieving a lower yield (3j). The yields of products 3 
were commonly not that high due to enones 2 easily 

decomposing under basic conditions. Further 
investigation of enones 2 also gave products 3 with 
acceptable yields and enantioselectivities. 
Gratifyingly, comparably less reactive chalcone also 
is the suitable substrate to give product 3p with 
acceptable outcome. Notably, in contrast to NHC-
catalyzed α,β-unsaturated aldehyde reactions, 
reactions involving salts 1 could be followed clearly 
by TLC in most cases, and products could be 
separated easily using silica gel column 
chromatography. 

Table 4. Scope of salts 1 and 1,3-dicarbonyl compounds 6. 

[a] 

 

[a] Scope of the reaction. Reaction conditions: 1 (1.5 equiv), 

6 (0.2 mmol), F (20 mol%), NaOAc (0.5 equiv), LiCl (1 

equiv), oxidant (1.2 equiv), dioxane (2 mL), rt, 40h. Yields 

of isolated products based on 6. The dr and er of 7 was 

determined by HPLC analysis on a chiral column. 

To demonstrate the generality of potassium 2-oxo-
3-enoates as efficient and practical surrogates for α,β-
unsaturated aldehydes in NHC-catalyzed asymmetric 
reactions, we investigated the reactions of potassium 
β,γ-unsaturated α- ketocarboxylates 1 with isatins 4 
via [3+2] cycloaddition to afford spirooxindole 
lactones 5,[18] as shown in Table 3. We then examined 
the asymmetric [3+3] annulation of potassium 2-oxo-
3-enoates 1 with 1,3-dicarbonyl compounds 6 to form 
lactones 7 [19] via oxidative NHC catalysis, as shown 
in Table 4. Expectedly, salts 1 underwent these 
asymmetric reactions smoothly, and gave the 
corresponding products with excellent yields and 
enantioselectivities. 

The proposed pathway for NHC-catalyzed salts 1 
acting as surrogates for α,β-unsaturated aldehydes is 
illustrated in Scheme 1. With the assistance of Lewis 
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acid LiCl, the addition of NHC to salts 1 gives 
intermediate I, which is liberated of CO2

[20] to form 
homoenolate intermediate II.[21] The addition of 
homoenolate intermediate II to enones or isatins 
affords cyclopentenes 3 or spirooxindole lactones 5, 

respectively, via known processes. Oxidation of 
homoenolate intermediate II could furnish α,β-
unsaturated acyl triazolium intermediate III,[22] which 
reacts with 1,3-dicarbonyl compounds 6 to finally 
give lactones 7  and release the NHC. 

 

Scheme 1. Proposed Mechanism. 

In summary, we have demonstrated that potassium 
2-oxo-3-enoates are outstanding and practical 
surrogates for α,β-unsaturated aldehydes in NHC-
catalyzed reactions with the assistance of Lewis acid 
(LiCl). These salts can be readily prepared at scale, 
easily stored and conveniently handled, to undergo 
catalytic asymmetric reactions with enones, isatins, 
and 1,3-dicarbonyl compounds to afford 
corresponding products with broad substrate scopes 
and good to excellent enantioselectivities under chiral 
NHC catalysis. Other reaction models for these salts 
1 are currently under investigation in our laboratory. 

Experimental Section 

General procedure for the synthesis of product 3 (3a as 
an example): To a dried 10 mL Schlenk tube equipped 
with a tiny magnetic stir bar under N2 atmosphere, 1a (64.2 
mg, 0.30 mmol), NHC pre-catalyst F (8.8 mg, 0.20 mmol), 
LiCl (16.8 mg, 0.40 mmol) and oven dried MgSO4 (10 mg) 
was added. To this mixture was added (E)-ethyl 4-oxo-4-
phenylbut-2-enoate 2a (40 μL, 0.20 mmol), followed by 
the addition of dry THF:Dioxane = 1:1 (2 mL) and DBU 
(15 μL, 0.1 mmol) via a micro syringe. The reaction 
mixture was stirred at 0°C to rt until (E)-ethyl 4-oxo-4-
phenylbut-2-enoate 2a disappeared, then the reaction 
mixture was directly applied to silica gel column 
chromatography (5% v/v ethyl acetate in hexane) to afford 
3a as a colorless gum in 73% yield, 4.7:1 dr and 95:5 er. 

General procedure for the synthesis of product 5 (5a as 
an example):A dry 10 mL Schlenk tube equipped with a 
magnetic stirring bar was successively charged with 1a 
(32.1 mg, 0.15 mmol), 1-benzylindoline-2,3-dione 4a (23.8 
mg, 0.10 mmol), NHC pre-catalyst B (7.4 mg, 0.02 mmol), 
LiCl (8.4 mg, 0.20 mmol) and 4Å Molecular Sieve (beads 
200 mg or powder 20 mg). The tube was closed with a 
septum. To this mixture was added DBU (7.5 μL, 0.05 
mmol), followed by the addition of dry THF (2 mL) via a 
micro syringe. The reaction mixture was stirred at room 
temperature until 1-benzylindoline-2,3-dione 4a 
disappeared, then the reaction mixture was directly applied 
to silica gel column chromatography (15% v/v ethyl 
acetate in hexane) to afford 5a as a white solid in 82% 
yield, 2.9:1 dr and 96:4 er. 

General procedure for the synthesis of product 7 (7a as 
an example):A dry 10 mL Schlenk tube equipped with a 
magnetic stirring bar was successively charged with 1a 
(64.2 mg, 0.3 mmol), pentane-2,4-dione 6a (20 uL, 0.20 
mmol), NHC pre-catalyst F (17.5 mg, 0.04 mmol), NaOAc 
(8.3 mg, 0.1mmol), LiCl (8.4 mg, 0.2mmol) and oxidant 
(98.4 mg 0.24 mmol).The tube was closed with a septum. 
To this mixture was added dry dioxane (2 mL). The 
reaction mixture was stirred at room temperature until 
pentane-2,4-dione 6a disappeared, then the reaction 
mixture was directly applied to silica gel column 
chromatography (10% v/v ethyl acetate in hexane) to 
afford 7a as a white solid in 93% yield and 96:4 er. 

. 
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