Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery and optimization of benzenesulfonanilide derivatives as a novel class of 11β-HSD1 inhibitors

Yosup Rew^{*}, Michael DeGraffenreid, Xiao He, Juan C. Jaen[†], Dustin L. McMinn, Daqing Sun, Hua Tu, Stefania Ursu, Jay P. Powers[†]

Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA

ARTICLE INFO

Article history: Received 8 February 2012 Revised 29 March 2012 Accepted 2 April 2012 Available online 9 April 2012

Keywords: 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor Benzenesulfonanilide

ABSTRACT

A novel series of benzenesulfonanilide derivatives of 11β-HSD1 inhibitors were identified via modification of the sulfonamide core of the arylsulfonylpiperazine lead structures. The synthesis, in vitro biological evaluation, and structure–activity relationship of these compounds are presented. Optimization of this series rapidly resulted in the discovery of compounds (*S*)-10 and (*S*)-23 (11β-HSD1 SPA $IC_{50} = 1.8$ and 1.4 nM, respectively).

© 2012 Elsevier Ltd. All rights reserved.

One of the key regulatory roles of glucocorticoids is glucose homeostasis. In this regard, glucocorticoids regulate gluconeogenesis in the liver and inhibit peripheral glucose uptake in muscle and adipose tissue. 11 β -Hydroxysteroid dehydrogenase type 1 (11 β -HSD1), a NADPH-dependent reductase, is a key enzyme that converts the inactive glucocorticoid cortisone to the active glucocorticoid hormone cortisol in liver, adipose, and brain. Excessive concentrations of glucocorticoids in the liver and adipose tissue can lead to glucose intolerance and insulin resistance.¹ In recent decades, selective inhibition of the 11 β -HSD1 enzyme has been considered to be a promising strategy for improving insulin sensitivity and treating type II diabetes.²

Previous research within our laboratories described a series of arylsulfonylpiperazine derivatives,³ exemplified by compound **1**, as potent 11 β -HSD1 inhibitors (Fig. 1). Compound **1** was a potent, selective, and orally bioavailable inhibitor with efficacy in a cynomolgus monkey ex vivo enzyme inhibition model.^{3a}

Compound **1** is known to bind to the substrate site in a Vshaped binding mode, and the central sulfonyl group is located near the catalytic triad residues of the enzyme.³ We recently succeeded in the expansion of structural diversity and optimization of structurally distinguished amide⁴ and sulfone⁵ series as novel 11β-HSD1 inhibitors. Replacement of the central sulfonamide functional group with other isosteric core moieties has been continuously fascinating to us, and herein we report on another novel

[†] Currently at ChemoCentryx, Inc., Mountain View, CA 94043, USA.

Figure 1. Representative arylsulfonylpiperazine 11β-HSD1 inhibitor.^{3b}

Scheme 1. Reagents and conditions: (a) TMS-CF₃, TBAF, THF, 93%; (b) SnCl₂, EtOH, 94%; (c) benzenesulfonyl chloride, pyridine, DCM, 58–92%; (d) for R = Me and Et: (i) Boc₂O, NaHCO₃, THF/H₂O, 100%; (ii) NaH, MeI (85%) or EtBr (70%), DMF; (iii) TFA, 100%; for R = *i*-Pr: acetone, AcOH, NaBH₃CN, AcCN, 80%.

^{*} Corresponding author. Tel.: +1 650 244 2682.

E-mail address: yrew@amgen.com (Y. Rew).

Table 1

Inhibition of 11β-HSD1 by selected analogs: initial N-alkylation

Compound ^a	R	hHSD1 SPA ^b IC ₅₀ (nM)	
6	Н	>1000	
7	Me	>1000	
8	Et	300	
9	<i>i</i> -Pr	21.4	

^a All compounds were racemates and gave satisfactory ¹H NMR, HPLC, and MS data that were in full agreement with their proposed structures; purity (>95%) was determined by HPLC analysis.

 $^{\rm b}$ Potency data were reported as the average of at least two determinations and IC_{50} values determined by a scintillation proximity assay.

Scheme 2. Reagents and conditions: (a) pyridine, DCM, 16–76%; (b) cyclopropylboronic acid, K₃PO₄, Pd(PPh₃)₄, toluene/H₂O = 10/1, 81–96%; (c) SnCl₂, EtOH, quantitatively; (d) Ac₂O, DMF, 73%; (e) isoamylnitrite, CuBr₂, AcCN, 91%.

class of 11 β -HSD inhibitors (**6**–**31** and **36**–**44**), which have a retroinverso sulfonamide isosteric core.

As an initial SAR effort, a series of simple benzenesulfonanilides, compounds **6**–**9**, were synthesized as described in Scheme 1.

Table 2

Sulfonamide aryl modification

Compound ^a	X	hHSD1 SPA ^b IC ₅₀ (nM)	h293 ^c (cell) IC ₅₀ (nM)	h293 (cell, 3% HSA ^d) IC ₅₀ (nM)
9	solution of the second	21.4	N/D	N/D
10	solution of the second	3.4	9.0	49
11	S ² , CI	15	22	262
12	ST. CI	27.8	N/D	N/D
13	Br	14	6.6	86
14		7.4	9.9	48
15		33	29	261
16	Srd CF3	39	71	769
17	NO ₂	5.3	8.0	103
18	5 cross	41	144	>1000
19	SO ₂ Me	652	548	>1000
20	solution of the second	3.1	11.2	91
21		9.7	14	108
22	CI S ² CI	19.1	N/D	N/D
23	CI	3.1	9.0	54

(continued on next page)

Table 2 (continued)

^a All compounds were racemates and gave satisfactory ¹H NMR, HPLC, and MS data that were in full agreement with their proposed structures; purity (>95%) was determined by HPLC analysis.

^b IC_{50} values determined by a scintillation proximity assay (all potency data are reported as the average of at least two determinations).

^c h293 = HEK 293 cells were stably transfected with full-length human 11 β -HSD1 (all potency data are reported as the average of at least two determinations).

^d HAS = human serum albumin (all potency data are reported as the average of at least two determinations).

Synthesis began with the conversion of 4'-nitroacetophenone **2** into the key intermediate aniline **4**. Treatment of **2** with TMS-CF₃, followed by reduction of the nitro group in **3** with SnCl₂ provided aniline **4**. Direct sulfonylation of **4** with benzenesulfonyl chloride afforded compound **6**. Preparation of *N*-monoalkyl anilines **5** by *N*-alkylation of a Boc-protected aniline (R = Me and Et) or direct reductive amination (R = *i*-Pr), followed by sulfonylation gave compounds **7**–**9**.

Compounds were evaluated for the inhibition of human 11β -HSD1 (Table 1).⁶ The initial primary phenyl-sulfonamide, compound **6**, exhibited no activity as an enzyme inhibitor in the

Scheme 3. Reagents and conditions: (a) TMSCF₃ (1.5 equiv), TBAF (0.0075 equiv), THF, 77%; (b) for R = cyclopropyl and cyclobutyl: RNH₂, Pd₂(dba)₃, BINAP, *t*-BuONa, toluene; 1 M TBAF, 49–80%; for R = Ph: RNH₂, Pd₂(dba)₃, BINAP, Cs₂CO₃; 1 M TBAF, 43%; (c) 2-chlorobenzenesulfonyl chloride, pyridine, 12–92% (d) for **37** and **39–41**: RBr, K₂CO₃, DMF, 13–93%; for **42**: (a) K₂CO₃, DMF, 73%; for **43**: (b) K₂CO₃, DMF, 10%.

biochemical assay. However, as the size of the *N*-alkyl substituent increased, in vitro biochemical potency improved. Although the methyl analog (**7**) was inactive, the ethyl analog **8** displayed a moderate activity ($IC_{50} = 300 \text{ nM}$). A 15-fold increase in the potency was observed when the ethyl group of compound **8** was replaced by the isopropyl group (compound **9**: $IC_{50} = 21 \text{ nM}$).

This interesting result led us to focus on further SAR with this benzenesulfonanilide series. To explore SAR of the aryl sulfonyl group systematically, we synthesized a variety of analogs with a modified aryl sulfonyl group (**10**–**31** in Scheme 2).

Most compounds (**10**–**17**, **19**–**25**, **29**, and **30**) were prepared by direct sulfonylation of **5** with a substituted benzenesulfonyl chloride. The Suzuki coupling reaction of **13** and **28** with cyclopropylboronic acid gave **18** and **31**, respectively. The nitro compound **25** was reduced to amine **26** under SnCl₂ conditions, and further acetylation gave **27**. Treatment of the diazonium salt, which was derived from **26**, with CuBr₂ provided **28**. Compounds were evaluated for the inhibition of human 11β-HSD1 enzymes in both biochemical assays and cell-based assays (Table 2).⁶

Screening a small focused library with a Cl substituent revealed that substitution at the 2-position improved11 β -HSD1 inhibition (**9**–**12** in Table 2). Compound **10**, a 2-Cl analog, is significantly more potent than its unsubstituent phenyl analog (**9**). Shifting the substituent to the *meta*- and *para*-positions also led to a drop in activity (**11** and **12**).

Further derivatization at the 2-position was investigated (13-20). The 2-Cl analog (10) was still the most potent compound, and the 2-F and 2-Me analogs (14 and 20) showed potencies comparable to that of 10. Additional substitutions at the 3, 4, 5, or 6 positions were then evaluated while preserving the 2-Cl substituent (21-24). Compound 23, the 2,5-dichlorophenyl analog, showed potency similar to that of 10; whereas the potency of all the other analogs was diminished. Lastly, we tried to replace the C-5 Cl group with other substituents (25-31) but none of those analogs was superior to 23 in terms of potency.

Table 3

N-alkyl modification

Compound ^a	R	hHSD1 SPA ^b IC ₅₀ (nM)	h293 ^c (cell) IC ₅₀ (nM)	h293 (cell, 3% HSA ^d) IC ₅₀ (nM)
10	s st	3.4	9.0	49
36	song the second	40	19	411
37	rrr .	13	42	614
38	son l	20	46	441
39	and the second s	61	144	>1000
40	sold in the second seco	46	112	>1000
41	rrr.	89	185	>1000
42	F	19	29	162
43	CF ₃	116	313	>1000
44	5 ^{rt}	134	620	N/D

^a All compounds were racemates and gave satisfactory ¹H NMR, HPLC, and MS data that were in full agreement with their proposed structures, and purity (>95%) was determined by HPLC analysis.

 $^{\rm b}$ IC₅₀ values determined by a scintillation proximity assay (all potency data are reported as the average of at least two determinations).

^c h293 = HEK 293 cells stably transfected with full length human 11β-HSD1 (all potency data are reported as the average of at least two determinations).

^d HSA = human serum albumin (all potency data are reported as the average of at least two determinations).

With the discovery of the improved potency imparted by the 2-Cl phenyl group to sulfonyl functionality, we returned to investigate further modifications of the *N*-alkyl substituents in **10**. Compounds **36**–**44** were prepared as outlined in Scheme 3. Treatment of ketone **32** with TMS-CF₃, followed by the Buchwald-Hartwig coupling reaction with the primary amines of **33** and deprotection of the trifluoromethyl carbinol group provided **34**. Sulfonylation of **34** with 2-chlorobenzenesulfonyl chloride afforded compound **36**, **38**, and **44**. The other *N*-alkyl derivatives (**37** and **39**–**43**) were prepared by direct alkylation of the primary sulfonamide **35**. Unfortunately, in this broad set of analogs, replacement of the isopropyl group resulted in a reduction in potency (Table 3).

Chiral separation of the most potent analogs, **10** and **23**, was achieved by preparative normal phase chiral HPLC (Chiralpak AD) and, as observed in our previously reported trifluoromethyl carbinol containing analogs, the (*S*) configuration proved to have greater 11β -HSD1 inhibitory activity.^{3–5} In this benzenesulfonanilide series, the absolute configuration of the trifluoromethyl carbinol

Figure 2. Single X-ray crystal structure of (S)-10.

Table 4

Effect of stereochemistry at the trifluoromethyl carbinol moiety

 $\begin{array}{c} \begin{array}{c} \mathsf{CF}_3 \\ \mathsf{N} \\ \mathsf{N} \\ \mathsf{N} \\ \mathsf{N} \end{array} \begin{array}{c} (S) \cdot \mathbf{10}, \mathbf{X} = \mathbf{H} \\ (S) \cdot \mathbf{23}, \mathbf{X} = \mathbf{CI} \end{array}$

Compound ^a	Х	hHSD1 SPA ^b IC ₅₀ (nM)	h293 ^c (cell) IC ₅₀ (nM)	h293 (cell, 3% HSA ^d) IC ₅₀ (nM)
10 (S)-10 (R)-10	H H H	3.4 1.8 113	9.0 5.8 138	49 25 >1000
23 (S)-23 (R)-23	Cl Cl	3.1 1.4 106	9.0 2.2 200	54 21 >1000

 $^{\rm a}$ All compounds gave satisfactory $^{\rm 1}{\rm H}$ NMR, HPLC, and MS data that were in full agreement with their proposed structures, and purity (>95%) was determined by HPLC analysis.

 $^{\rm b}$ IC_{50} values determined by a scintillation proximity assay (all potency data are reported as the average of at least two determinations).

 c h293 = HEK 293 cells stably transfected with full length human 11 β -HSD1 (all potency data are reported as the average of at least two determinations).

^d HSA = human serum albumin (all potency data are reported as the average of at least two determinations).

was determined by single X-ray crystallography of the active isomer of compound **10** (Fig. 2) and the (S)-enantiomers are about over 60 times more potent than the corresponding (R)-isomers in both biochemical and cellular assays (Table 4).

In summary, we have identified a novel class of benzenesulfonanilide inhibitors of the human 11 β -HSD1. Optimization of this series rapidly resulted in the discovery of compounds (*S*)-10 and (*S*)-23, with single-digit nanomolar potency in both biochemical and cell-based assays.

Acknowledgements

The authors would like to thank Dr. Frederick Hollander at the University of California, Berkeley for solving the single X-ray crystal structure of compound (*S*)-10.

References and notes

- (a) Morgan, S. A.; Tomlinson, J. W. Expert Opin. Investig. Drugs 2010, 19, 1067; (b) Boyle, C. D.; Kowalski, T. J. Expert Opin. Ther. Patents 2009, 196, 801; (c) Fotsch, C.; Wang, M. J. Med. Chem. 2008, 51, 4851.
- Recent papers about 11β-HSD1 target: (a) Wu, S. C.; Yoon, D.; Chin, J.; van Kirk, K.; Seethala, R.; Golla, R.; He, B.; Harrity, T.; Kunselman, L. K.; Morgan, N. N.; Ponticiello, R. P.; Taylor, J. R.; Zebo, R.; Harper, T. W.; Li, W.; Wang, M.; Zhang, L.; Sleczka, B. G.; Nayeem, A.; Sheriff, S.; Camac, D. M.; Morin, P. E.; Everlof, J. G.; Li, Y.; Ferraro, C. A.; Kieltyka, K.; Shou, W.; Vath, M. B.; Zvyaga, T. A.; Gordon, D. A.; Robl, J. A. Bioorg. Med. Chem. Lett. 2011, 21, 6693; (b) Wang, H.; Robl, J. A.; Hamann, L. G.; Simpkins, L.; Golla, R.; Li, Y.; Seethala, R.; Zvyaga, T.; Gordon, D. A.; Li, J. J. Bioorg. Med. Chem. Lett. 2011, 21, 4146; (c) Venier, O.; Pascal, C.; Braun, A.; Namane, C.; Mougenot, P.; Crespin, O.; Pacquet, F.; Mougenot, C.; Monseau, C.; Onofri, B.; Dadji-Faihun, R.; Leger, C.; Ben-Hassine, M.; Van-Pham, T.; Ragot, J.; Philippo, C.; Guessregen, S.; Engel, C.; Farjot, G.; Noah, L.; Maniani, K.; Nicolai, E. Bioorg. Med. Chem. Lett. 2011, 21, 2244; (d) Maletic, M.; Leeman, A.; Szymonifka, M.; Mundt, S. S.; Zokian, H. J.; Shah, K.; Dragovic, J.; Lyons, K.; Thieringer, R.; Vosatka, A. H.; Balkovec, J.; Waddell, S. T. Bioorg. Med. Chem. Lett. 2011, 21, 2568; (e) Sun, W.; Maletic, M.; Mundt, S. S.; Shah, K.; Zokian, H.; Lyons, K.; Waddell, S. T.; Balkovec, J. Bioorg. Med. Chem. Lett. 2011, 21, 2141; (f) Tice, C. M.; Zhao, W.; Krosky, P. M.; Kruk, B. A.; Berbaum, J.; Johnson, J. A.; Bukhtiyarov, Y.; Panemangalore, R.; Scott, B. B.; Zhao, Y.; Bruno, J. G.; Howard, L.; Togias, J.; Ye, Y.; Singh, S. B.; McKeever, B. M.; Lindblom, P. R.; Guo, J.; Guo, R.; Nar, H.; Schuler-Metz, A.; Gregg, R. E.; Leftheris, K.; Harrison, R. K.; McGeehan, G. M.; Zhuang, L.; Claremon, D. A. Bioorg. Med. Chem. Lett. 2010, 20, 6725; (g) Cheng, H.; Hoffman, J.; Le, P.; Nair, S. K.; Cripps, S.; Matthews, J.; Smith, C.; Yang, M.; Kupchinsky, S.; Dress, K.; Edwards, M.; Cole, B.; Walters, E.; Loh, C.; Ermolieff, J.; Fanjul, A.; Bhat, G. B.; Herrera, J.; Pauly, T.; Hosea, N.; Paderes, G.; Rejto, P. Bioorg, Med. Chem. Lett. 2010, 20, 2897; (h) Veniant, M. M.; Hale, C.; Hungate, R. W.; Gahm, K.; Emery, M. G.; Jona, J.; Joseph, S.; Adams, J.; Hague, A.; Moniz, G.;

Zhang, J.; Bartberger, M. D.; Li, V.; Syed, R.; Jordan, S.; Komorowski, R.; Chen, M. M.; Cupples, R.; Kim, K. W.; St. Jean, D. J., Jr; Johansson, L.; Henriksson, M. A.; Williams, M.; Vallgarda, J.; Fotsch, C.; Wang, M. *J. Med. Chem.* **2010**, *53*, 4481.

- (a) Sun, D.; Wang, Z.; Cardozo, M.; Choi, R.; DeGraffenreid, M.; Di, Y.; He, X.; Jaen, J. C.; Labelle, M.; Liu, J.; Ma, J.; Miao, S.; Sudom, A.; Tang, L.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J. P. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1522; (b) Sun, D.; Wang, Z.; Di, Y.; Jaen, J. C.; Labelle, M.; Ma, J.; Miao, S.; Sudom, A.; Tang, L.; Tomooka, C. S.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J. P. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3513.
- (a) Sun, D.; Wang, Z.; Caille, S.; DeGraffenreid, M.; Gonzalez, F.; Hungate, R.; Jaen, J. C.; Jiang, B.; Julian, L. D.; Kelly, R.; McMinn, D. L.; Kaizerman, J.; Rew, Y.; Sudom, A.; Tu, H.; Ursu, S.; Walker, N.; Willcockson, M.; Yan, X.; Ye, Q.; Powers, J. P. Bioorg. Med. Chem. Lett. 2011, 21, 405; (b) Rew, Y.; McMinn, D.; Wang, Z.; He, X.; Hungate, R. W.; Jaen, J.; Sudom, A.; Sun, D.; Tu, H.; Ursu, S.; Villemure, E.; Walker, N.; Yan, X.; Ye, Q.; Powers, J. P. Bioorg. Med. Chem. Lett. 2009, 19, 1797; (c) McMinn, D.; Rew, Y.; Wang, Z.; Sudom, A.; Caille, S.; DeGraffenreid, M.; He, X.; Hungate, R. W.; Jiang, B.; Jaen, J.; Julian, L. D.; Kaizerman, J.; Novak, P.; Sun, D.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Wang, Z.; Powers, J. P. Bioorg. Med. Chem. Lett. 2009, 19, 1446; (d) Julian, L. D.; Wang, Z.; Bostick, T.; Caille, S.; Choi, R.; DeGraffenreid, M.; Di, Y.; He, X.; Hungate, R. W.; Jaen, J. C.; Liu, J.; Monshouwer, M.; McMinn, D.; Rew, Y.; Sudom, A.; Sun, D.; Tu, H.; Ursu, S.; Walker, N.; Yan, X.; Ye, Q.; Powers, J. P. J. Med. Chem. 2008, 51, 3953.
- Yan, X.; Wang, Z.; Cardozo, M.; DeGraffenreid, M.; Di, Y.; Fan, P.; He, X.; Jaen, J. C.; Labelle, M.; Liu, J.; Ma, J.; McMinn, D.; Miao, S.; Sudom, A.; Sun, D.; Tang, L.; Tu, H.; Ursu, S.; Walker, N.; Ye, Q.; Powers, J. P. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 7071.
- 6. 11β-HSD1 enzyme activity was determined by measuring the conversion of $[{}^{3}H]$ -cortisone to $[{}^{3}H]$ -cortisol. Product $[{}^{3}H]$ -cortisol, captured by an anticortisol monoclonal antibody conjugated to scintillation proximity assay (SPA) beads, was quantified with a microscintillation plate reader. Biochemical enzyme assays were performed with Baculovirus-produced recombinant fullength human or mouse 11β-HSD1 as the enzyme source and NADPH as cofactor. Cell-based enzyme assays (h293) utilized HEK293 cells stably expressing recombinant human full-length 11β-HSD1 as the enzyme source without supplementation of NADPH. IC₅₀ values for enzyme inhibition were calculated with a dose response curve fitting algorithm with at least duplicate sets of samples. In the cellular assay, selected compounds were tested in the presence of human serum albumin (HSA) to measure the impact of protein binding.