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ABSTRACT: The rhodium(III)-catalyzed direct alkenylation of N-phenylindole-3-carboxylic 

acids with alkenes including acrylate ester, acrylamide, and acrylonitrile proceeds smoothly at 

the C4-position through regioselective C–H bond cleavage directed by the carboxyl group. In 

marked contrast, the indole substrates react with diarylacetylenes accompanied by cleavage of 

the C2–H and C2’–H bonds and decarboxylation to produce 5,6-diarylindolo[1,2-a]quinolone 

derivatives. DFT calculations have suggested that the smooth insertion of an alkene to a C4-

rhodated six-membered metallacycle intermediate leads to the C4 alkenylated products, while the 

latter annulation at the C2 and C2’ positions is attributable to facile reductive elimination in the 

corresponding seven-membered metallacycles formed by the double C-H bond cleavage and 

alkyne insertion.  

 

INTRODUCTION 

Since variously substituted indoles can be seen in a broad range of biologically active natural and 

unnatural compounds, the development of regioselective substitution methods on indole 

skeletons has been of substantial importance in organic synthesis field. As one of the most 

powerful, straightforward tools for the regioselective substitution on aromatic compounds, the 

transition-metal-catalyzed C–H bond functionalization utilizing directing groups1 has been 

extensively studied, and the direct methods have been employed for derivatizing indoles. Most of 

such reactions on indoles with use of C-3 directing groups take place on the more electron-rich 

pyrrole ring (C-2), although those at the phenyl ring (C-4) are observed in some cases.2 For the 

former examples, we reported the palladium-, rhodium-, and ruthenium-catalyzed oxidative 

coupling reactions of indole-3-carboxylic acids as well as those of indole-2-carboxylic acids with 
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alkenes and alkynes through cleavage of the C2–H bond (or C3-H bond in the case of the 2-

carboxylic acids).3 The carboxylic function is especially useful as it can be used in further 

derivatization reactions and also removable after the coupling event. To obtain mechanistic 

information about the rhodium-catalyzed reaction, we examined the H/D exchange reaction of N-

(4-ButC6H4)phenylindole-3-carboxylic acid as a representative substrate, which allows the 

assignment of each of the protons in its 1H NMR analysis, by using CD3CO2D as a D-source 

(Scheme 1). Interestingly, we observed the deuterium incorporation at the C4- and C2’-positions 

in addition to the expected C2-position. Thus, the C–H bond cleavage steps, i.e. paths (a), (b), 

and (c) appear to be reversible. This observation encouraged us to develop new site-selective 

functionalization methods for indole-3-carboxylic acid derivatives under rhodium catalysis. 

 

Scheme 1. H/D Exchange of N-(4-ButC6H4)phenylindole-3-carboxylic acid 
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In the above context of our studies, we have found that N-phenylindole-3-carboxylic acids 

undergo oxidative alkenylation at the C4-position upon treatment with alkenes such as acrylates 

in the presence of a Cp*Rh(III) catalyst and a silver salt oxidant (Scheme 2a). In marked contrast, 

it has been observed that N-phenylindole-3-carboxylic acids couple with diarylacetylenes under 

similar conditions through cleavage of the C2-H and C2’-H bonds accompanied by 

decarboxylation to produce 5,6-diarylindolo[1,2-a]quinolone derivatives.4 Although similar 

tetracyclic compounds, which are fluorescent in the solid state, could also be obtained under 

palladium catalysis,3e the product yields were moderate to low and the substrate scope was rather 

limited. 

Recently, the ruthenium- and palladium-catalyzed C4-alkenylation of indole nuclei utilizing 

formyl-5 and sulfonylamino-directing groups,6 respectively, were reported. Afterward, Prabhu and 

co-workers demonstrated that the C4-alkenylation of 3-(trifluoroacetyl)indoles can be achieved 

under rhodium catalysis (Scheme 2b).7 However, under their conditions, the reaction utilizing a 

carboxyl directing group gave a complex mixture.7a After the initiation of this work, Zhang and 

co-workers disclosed that treatment of indole-3-carboxylic acids with alkenes by using a 

rhodium catalyst and a copper oxidant leads to dialkenylation at the C2- and C4-positions and 

spontaneous decarboxylation to produce 2,4-dialkenylated indole derivatives (Scheme 2c).8 In the 

present case, only the C-4 mono-alkenylation occurs and the carboxyl group remains in the 

alkenylated products. As a preliminary attempt, we have combined the C4-alkenylion with the 

subsequent coupling with an alkyne in a one-pot manner. 

Furthermore, we have performed DFT calculations to provide rational insight into the different 

site-selectivity in the reactions with alkenes and alkynes: The dominant origins of such C2/C4 
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 5 

selectivity have been little known. These results for the experimental and theoretical studies are 

described herein. 

 

Scheme 2. Regioselective C–H Bond Functionalization of Indoles 
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In an initial attempt, N-phenylindole-3-carboxylic acid (1a) (0.2 mmol) was treated with butyl 
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 6 

dioxane, and DMF diminished the yield of 3aa (entries 2-5). In PhCl, Ag2CO3 was found to be as 

effective as AgOAc (entry 6). Interestingly, decreasing the reaction temperature to 80 oC 

enhanced the yield to 77% (entry 8). However, a further decrease to 60 oC reduced it to 61% 

(entry 9). 

 

Table 1. Reaction of N-Phenylindole-3-carboxylic Acid (1a) with Butyl Acrylate (2a)a 

 

a Reaction conditions: 1) 1a (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl2]2 (0.005 mmol), AgOAc 
(0.4 mmol) in solvent (2 mL) under N2 for 12 h, unless otherwise noted: 2) With the addition of 
MeI (1.2 mmol), K2CO3 (0.6 mmol), and DMF (2 mL) at rt for 12 h. b GC yield based on the 
amount of 1a used. Value in parentheses indicates yield after purification. c Ag2CO3 (0.2 mmol) 
was employed in place of AgOAc. 

 

Under the conditions in entry 8 of Table 1, the reactions of 1a with various alkenes 2b-h were 
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 7 

methyl-, tert-butyl-, and chloro-substituted phenylindole-3-carboxylic acids 1b-d reacted with 2a 

to afford 3ba-da (entries 8-10). 7-Methyl, 6-chloro, and 5-methoxy indole substrates 1e-g also 

underwent the coupling with 2a to form 3ea-ga (entries 11-13). A benzo-fused indole substrate, 

1-phenyl-1H-benzo[g]indole-3-carboxylic acid (1h) was also alkenylated at the C4 position 

under standard conditions to produce 3ha in 73% yield (entry 14).  

 

Table 2. Reaction of N-Arylindole-3-carboxylic Acids 1 with Alkenes 2a 
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 8 

 
a Reaction conditions: 1) 1 (0.2 mmol), 2 (0.4 mmol), [Cp*RhCl2]2 (0.005 mmol), AgOAc (0.4 

mmol) in PhCl (2 mL) at 80 oC under N2 for 12 h, unless otherwise noted: 2) With the addition of 
MeI (1.2 mmol), K2CO3 (0.6 mmol), and DMF (2 mL) at rt for 12 h. b Isolated yield. 
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 9 

acid (3aa’) under Goossen’s conditions9a gave (E)-4-(3-butoxy-3-oxoprop-1-en-1-yl)-1-phenyl-

1H-indole (3aa’’) in 72% yield (Scheme 3). 

 

 

Scheme 3.  Decarboxylation of 3aa’ 

 

 

 

Coupling with Alkynes 

As described above, the reaction of 1a with diphenylacetylene (4a) proceeded through 

cleavage of the C2–H and C2’–H bonds and decarboxylation to give rise to an indolo[1,2-

a]quinolone framework.10 Thus, treatment of 1a (0.3 mmol) with 4a (0.2 mmol) in the presence 
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for 24 h afforded 5,6-diphenylindolo[1,2-a]quinolone (5aa) in 78% yield (Table 3). Variously 
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 10 

with 4a or 4d to give the corresponding tetra-, penta-, and hexacyclic products 5ba-da, 5cd, 5ia, 

and 5jd. 

 

Table 3. Reaction of N-Arylindole-3-carboxylic Acids 1 with Alkynes 4a 

 
a Reaction conditions: 1 (0.3 mmol), 4 (0.2 mmol), [Cp*RhCl2]2 (0.005 mmol), Ag2CO3 (0.2 

mmol) in o-xylene (2 mL) at 120 oC under N2 for 24 h, unless otherwise noted. b Isolated yield 
based on the amount of 4 used. 
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We next examined the one-pot three-component coupling11 of 1c, 2e, and 4a through the C4-

alkenylation and successive alkyne annulation at the C2- and C2’-positions. Thus, 1c (0.2 mmol) 

was treated with 2e (0.4 mmol) in the presence of [Cp*RhCl2]2 (0.005 mmol) and AgOAc (0.4 

mmol) in PhCl under N2 at 80 oC for 12 h. After evaporation of the solvent under vacuum, 4a (0.2 

mmol), [Cp*RhCl2]2 (0.005 mmol), Ag2CO3 (0.2 mmol), and o-xylene were added and heated at 

120 oC under N2 for 24 h. From the resulting reaction mixture, the corresponding three-

component coupling product 6a was isolated in 36% yield (Scheme 4). Similarly, the three-

component coupling of 1a, 2e, and 4d furnished  6b, albeit with a low yield.  

 

Scheme 4.  Three-Component Coupling  

 

 

DFT Calculation for Acrylonitrile Insertion 

In order to clarify the cause of the different site-selectivity in the reactions with alkenes and 
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 12 

transition states (TS) per an insertion position due to the orientation of the cyano group. 

Therefore, 24 insertion TSs and intermediates were calculated for the acrylonitrile insertion 

reactions. 

 

 
Figure 1. Six possible alkene and alkyne insertion positions (I - VI) in rhodacycle intermediates 

A, B, and C. 

 

The 24 intermediates of the acrylonitrile insertion with the activation free energy (∆G‡) and the 

reaction free energy (∆G) are shown in Figure S1 (see Supporting Information). The insertion 

reaction, in which the acrylonitrile is inserted into Position I with the cyano group orienting to 

the Rh side as shown in Figure 2, has the lowest activation free energy among the 24 insertion 

reactions. The result shows that the acrylonitrile kinetically advantageously inserts into Position 

I, which is consistent with the experimental observation that the alkenes are coupled at the C4-

position of the indole substrate.  

Figure 2 shows the Gibbs free energy diagram for the entire reaction from the insertion 

reaction to the β-hydrogen elimination. The Gibbs free energy is a relative value based on the 

energy of the rhodacycle intermediate A and acrylonitrile. Acrylonitrile coordinates to Rh of A 

to form π-complex intermediate D. Then, acrylonitrile inserts into the Rh-C bond of D leading to 
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 13 

intermediate D-IM1 via transition state D-TS1. The activation free energy and reaction free 

energy of the insertion reaction are 9.0 and –16.0 kcal mol–1, respectively, indicating that this 

reaction proceeds rapidly. 

 

Figure 2. Gibbs free energy diagram in the insertion reaction of acrylonitrile to rhodacycle 

intermediate A. The relative Gibbs free energy are given in kcal mol–1. 

 

A β-hydrogen approaching to Rh is necessary to undergo β-hydrogen elimination in the 

intermediate D-IM1. However, as shown in Figure 3(a), Rh and β-hydrogen are spatially 

separated (3.278 Å) in D-IM1. Therefore, we searched for another conformer in which the β-

hydrogen is placed proximally to Rh. As a result, a metastable conformer D-IM2 with the Rh 

and β-hydrogen distance of 1.872 Å was found, as shown in Figure 3(b). D-IM2 was 7.8 kcal 

mol–1 less stable than D-IM1. This indicates that the β-hydrogen transfer proceeds after changing 

the conformation from D-IM1 to D-IM2. 
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 14 

 

Figure 3. Structures of (a) conformer D-IM1 and (b) meta-stable conformer D-IM2. 

 

The length of β C-H bond proximal to Rh of D-IM2 is extended to 1.166 Å, while that of D-

IM1 is 1.088 Å. This bond extension indicates the presence of an agostic interaction. The 

activation free energy of the β-hydrogen transfer from D-IM2 through D-TS2 to D-IM3 was 6.5 

kcal mol–1. The low activation free energy may be due to the agostic interaction. This indicates 

that the conformational change to D-IM2 induces the β-hydrogen transfer promptly. 

In summary, the activation free energy of the acrylonitrile insertion into Position I leading to 

D-IM1 was the lowest activation free energy among the possible 24 insertion reactions. After 

changing the conformation from D-IM1 to D-IM2, a β-hydrogen elimination easily proceeds to 

form C4-coupled precursor D-IM3. Therefore, the regioselectivity of the coupling with alkenes 

is ascribed to the activation free energy of the insertion reaction (D-TS1). 
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DFT Calculation for Diphenylacetylene Insertion 

In the diphenylacetylene insertion reaction, there is one transition state (TS) per an insertion 

position shown in Figure 1. Thus, DFT calculations were performed for the six types of insertion 

reactions. The Gibbs free energy diagram is shown in Figure 4. The Gibbs free energy is a 

relative value based on the energy of the rhodacycle intermediates A, B, or C and 

diphenylacetylene. Coordination of a diphenylacetylene to Rh in A, B, and C, leads to π-complex 

intermediates E, F, and G, respectively. The diphenylacetylene inserts into the Rh-C or Rh-O 

bond of E, F, and G via the six types of TSs (E-TS1, E-TS2, F-TS1, F-TS2, G-TS1, and G-

TS2) forming the intermediates E-IM1, E-IM2, F-IM1, F-IM2, G-IM1, and G-IM2. The 

reaction from G to G-IM2 has the lowest activation free energy of 11.3 kcal mol–1 with a 

negative value of the reaction free energy in the six insertion reactions. However, the anticipated 

product G-P by reductive elimination in G-IM2 was not detected at all in our experiments. 

Therefore, the activation free energy of the insertion reaction does not simply determine the 

regioselectivity of the coupling with alkynes. 
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Figure 4. Gibbs free energy diagram in the 4 types of insertion reactions of diphenylacetylene to 

the rhodacycle intermediates (a) A, (b) B, and (c) C. The relative Gibbs free energies are given in 

kcal mol–1. 

 

The insertion intermediates lead to the coupling products E-P, F-P, and G-P by the reductive 

elimination of Rh. Although we carefully explored TS of the reductive elimination of E-IM2, it 
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 17 

was not found. The reductive elimination of E-IM1 has an activation free energy of 38.2 kcal 

mol–1, which is higher than that of the reverse reaction of the diphenylacetylene insertion (30.5 

kcal mol–1), indicating that the reductive elimination of E-IM1 is slower than the 

diphenylacetylene desorption. This is consistent with the experimental observation that the 

alkyne did not couple at the C4-position at all. 

The activation free energies of the reductive elimination of F-IM1 and F-IM2 are 18.7 and 

11.4 kcal mol–1, respectively, which are significantly lower than that of the reductive elimination 

of E-IM1 (38.2 kcal mol–1) and the diphenylacetylene desorption of F-IM1 and F-IM2 (29.3 and 

42.2 kcal mol–1). This result shows that the reductive eliminations of F-IM1 and F-IM2 proceed 

to form the coupling product F-P, which corresponds to the C2/C2'-coupled product observed in 

our experiments. Therefore, the experimental observation that diphenylacetylene reacted at the 

C2- and C2'-positions can be explained by the low activation free energy of reductive 

eliminations in F-IM1 and F-IM2. 

The activation free energy of the reductive elimination of G-IM1 and G-IM2 (20.4 and 23.2 

kcal mol–1) are higher than that of the reductive eliminations of F-IM1 and F-IM2 (18.7 and 

11.4 kcal mol–1), indicating that the reductive elimination of G-IM1 and G-IM2 is slower than 

that of F-IM1 and F-IM2. This is consistent with the fact that the coupling reaction of the N-

phenylindole with alkynes predominantly gave the products coupled at the C2- and C2'-positions.  

 

CONCLUSIONS 

We have demonstrated that N-phenylindole-3-carboxylic acids undergo alkenylation at the C-4 

position on treatment with alkenes such as acrylate ester, acrylamide, and acrylonitrile in the 
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presence of a rhodium(III) catalyst and a silver salt oxidant via regioselective C–H bond 

cleavage. On the other hand, we have observed that the indoles react with diarylacetylenes 

through cleavage of the C2–H and C2’–H bonds and decarboxylation to selectively furnish the 

corresponding annulated products in good yields even under similar conditions. A one-pot three-

component coupling of the mother substrate N-phenylindole-3-carboxylic acid with an alkene 

and an alkyne has also been shown. 

   Since the site-selective introduction of functional substituents onto arenes and heteroarenes 

involving indoles2 is currently of substantial importance, we have also performed DFT 

calculations to provide rational insight into the observed different site-selectivity with alkenes 

and alkynes in the present catalytic system. As a result, it has been suggested that the smooth 

insertion of an alkene to a C4-rhodated metallacycle intermediate is the key for the selective 

alkenylation. As for the annulation with alkynes at the C2 and C2’ positions, the facile reductive 

elimination in the corresponding alkyne-inserted seven-membered metallacycles seems to be the 

key factor.  The information obtained in this work would be helpful in designing new catalytic 

substitution reactions on benzo-fused heteroarenes of importance medicinal and materials 

chemistry. 

 

EXPERIMENTAL SECTION 

General. 1H and 13C NMR spectra were recorded at 400 and 100 MHz for CDCl3 solutions. 

HRMS data were obtained by APCI using a TOF mass spectrometer. GC analysis was carried 

out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m). GC-MS analysis was carried out using 

a CBP-1 capillary column (i. d. 0.25 mm x 25 m). The structures of all products listed below 
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were unambiguously determined by 1H and 13C NMR with the aid of NOE, COSY, HMQC, and 

HMBC experiments. 

N-Arylindole-3-carboxylic acid 1a-j8,12 and alkynes 4b-h,j13 and 4i14 were prepared according 

to published procedures. 

The following experimental procedures may be regarded as typical in methodology and scale. 

Rh-Catalyzed Reaction of N-Arylindole-3-carboxylic acids 1 with Alkenes 2.  To a 20 mL 

two-necked flask with a reflux condenser, a balloon, and a rubber cup were added N-arylindole-

3-carboxylic acid 1 (0.2 mmol), alkene 2 (0.4 mmol), [Cp*RhCl2]2 (0.005 mmol, 3 mg), AgOAc 

(0.4 mmol, 67 mg), dibenzyl (ca. 30 mg) as internal standard, and chlorobenzene (2 mL). Then 

the resulting mixture was stirred under nitrogen at 80 °C (bath temperature). After cooling, CH3I 

(1.2 mmol), K2CO3 (0.6 mmol, 83 mg), and DMF (2 mL) were added and the resulting mixture 

was stirred under air at room temperature for 12 h. Then the reaction mixture was diluted by 

ethyl acetate (100 mL). The organic layer was washed by water (100 mL, three times) and dried 

over Na2SO4. After evaporation of the solvents under vacuum, product 3 was isolated by column 

chromatography on silica gel using hexane−ethyl acetate as eluent. Further purification by GPC 

(gel permeation chromatography) was performed, if needed. 

Calculation Method 

The DFT calculations were employed by the long-range and dispersion corrected ωB97X-D 

functional.15 The 6-311G(d,p) basis set was used for H, C, N, and O atoms.16 The Stuttgart-

Dresden SDD effective core potential basis set17 was used for Rh atom with an additional f 

polarization function (ζf(Rh)=1.350).18 The solvent effect of o-xylene was taken account by the 

Polarizable Continuum Model using the integral equation formalism (IEFPCM)19 for DFT 

calculations. Acrylonitrile and diphenylacetylene were selected as the alkene and alkyne 
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molecules, respectively. The optimized molecular structures were verified by vibrational 

analysis; equilibrium structures did not have imaginary frequencies and transition state structures 

had only one imaginary frequency corresponding to the reaction coordinate. Additionally, the 

intrinsic reaction coordinate (IRC) calculations20 were carried out to check whether the transition 

state leading to the reactant and the product. Gibbs free energies were calculated by using the 

unscaled vibrational frequencies. All calculations were carried out using the Gaussian 16 

program.21  

 

Characterization Data of Products 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate (3aa): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange oil; 57 mg 

(75%); 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.4 Hz, 3H), 1.50 (sext, J = 7.4 Hz, 2H), 1.74 

(quint, J = 6.9 Hz, 2H), 3.93 (s, 3H), 4.26 (t, J = 6.6 Hz, 2H), 6.42 (d, J = 15.8 Hz, 1H), 7.29 (d, 

J = 7.9 Hz, 1H), 7.46-7.49 (m, 4H), 7.55-7.59 (m, 3H), 8.12 (s, 1H), 9.30 (d, J = 16.7 Hz, 1H); 

13C NMR (100 MHz, CDCl3) δ 14.0, 19.4, 31.0, 51.7, 64.4, 110.0, 112.7, 118.5, 121.5, 123.7, 

125.1, 125.5, 128.4, 129.6, 130.0, 137.0, 138.1, 138.2, 146.0, 165.0, 167.6; HRMS m/z calcd for 

C23H24NO4 ([M+H]+) 378.1700, found 378.1699. 

Methyl (E)-4-(3-Isobutoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate (3ab): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange oil; 48 mg 

(64%); 1H NMR (400 MHz, CDCl3) δ 1.04 (d, J = 6.7 Hz, 6H). 2.08 (sep, J = 6.7 Hz, 1H), 3.92 (s, 

3H), 4.04 (d, J = 6.6 Hz, 2H), 6.43 (d, J = 15.3 Hz, 1H), 7.24-7.35 (m, 1H), 7.46-7.50 (m, 4H), 

7.54-7.60 (m, 3H), 8.12 (s, 1H), 9.32 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 19.4, 

28.1, 51.7, 70.7, 110.0, 112.7, 118.5, 121.5, 123.7, 125.2, 125.5, 128.4, 129.58, 130.0, 136.9, 

Page 20 of 38

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 21 

138.1, 138.2, 145.9, 165.0, 167.6; HRMS m/z calcd for C23H24NO4 ([M+H]+) 378.1700, found 

378.1698. 

Methyl (E)-4-(3-(tert-Butoxy)-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate 

(3ac): purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange oil; 51 

mg (68%); 1H NMR (400 MHz, CDCl3) δ 1.58 (s, 9H), 3.92 (s, 3H), 6.37 (d, J = 15.8 Hz, 1H), 

7.23-7.36 (m, 1H), 7.45-7.49 (m, 4H), 7.55-7.59 (m, 3H), 8.12 (s, 1H), 9.23 (d, J = 15.8 Hz, 1H); 
13C NMR (100 MHz, CDCl3) δ 28.4, 51.7, 80.2, 110.0, 112.5, 120.4, 121.4, 123.6, 125.1, 125.5, 

128.4, 129.7, 130.0, 136.9, 138.1, 138.2, 144.8, 165.0, 166.9; HRMS m/z calcd for C23H24NO4 

([M+H]+) 378.1700, found 378.1680. 

Methyl (E)-4-(3-(Cyclohexyloxy)-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate 

(3ad): purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange solid; 49 

mg (65%); mp 142-144 °C; 1H NMR (400 MHz, CDCl3) δ 1.29-1.61 (m, 7H), 1.81-1.97 (m, 4H), 

3.93 (s, 3H), 6.42 (d, J = 15.8 Hz, 1H), 7.25-7.30 (m, 1H), 7.45-7.49 (m, 4H), 7.54-7.59 (m, 3H), 

8.12 (s, 1H), 9.27 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 23.9, 25.7, 31.9, 51.7, 72.5, 

110.0, 112.6, 119.1, 121.5, 123.6, 125.1, 125.4, 128.4, 129.6, 130.0, 136.9, 138.1, 138.2, 145.6, 

165.0, 166.9; HRMS m/z calcd for C25H26NO4 ([M+H]+) 404.1856, found 404.1865. 

Methyl (E)-4-(3-Ethoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate (3ae): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange oil; 46 mg 

(66%); 1H NMR (400 MHz, CDCl3) δ 1.38 (t, J = 7.1 Hz, 3H), 3.94 (s, 3H), 4.32 (q, J = 7.1 Hz, 

2H), 6.42 (d, J = 15.8 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.45-7.49 (m, 4H), 7.55-7.59 (m, 3H), 

8.13 (s, 1H), 9.29 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 14.6, 51.7, 60.5, 110.0, 

112.8, 118.5, 121.6, 123.7, 125.1, 125.5, 128.4, 129.6, 130.0, 137.0, 138.1, 138.2, 146.0, 165.0, 

167.5; HRMS m/z calcd for C21H20NO4 ([M+H]+) 350.1387, found 350.1372. 
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Methyl (E)-4-(3-Methoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-carboxylate (3af): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange solid; 46 mg 

(68%); mp 107-110 °C; 1H NMR (400 MHz, CDCl3) δ 3.86 (s, 3H), 3.94 (s, 3H), 6.42 (d, J = 

15.8 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.46-7.50 (m, 4H), 7.55-7.59 (m, 3H), 8.13 (s, 1H), 9.31 

(d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 51.76, 51.83, 109.9, 112.8, 118.1, 121.6, 

123.7, 125.1, 125.5, 128.5, 129.5, 130.1, 137.1, 138.1, 138.2, 146.3, 165.0, 167.9; HRMS m/z 

calcd for C20H18NO4 ([M+H]+) 336.1230, found 336.1221. 

Methyl (E)-4-(3-(Dimethylamino)-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole-3-

carboxylate (3ag): purified by column chromatography on silica gel (hexane/EtOAc = 3:1); 

orange solid; 49 mg (71%); mp 153-155 °C; 1H NMR (400 MHz, CDCl3) δ 3.10 (s, 3H), 3.22 (s, 

3H), 3.94 (s, 3H), 6.82 (d, J = 15.3 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 7.44-7.50 (m, 4H), 7.52-

7.59 (m, 3H), 8.10 (s, 1H), 9.05 (d, J = 15.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 36.0, 37.7, 

51.8, 110.2, 112.0, 118.3, 121.3, 123.6, 124.9, 125.5, 128.3, 130.0, 130.8, 136.6, 138.0, 138.3, 

143.4, 165.0, 167.3; HRMS m/z calcd for C21H21N2O3 ([M+H]+) 349.1547, found 349.1546. 

Methyl (E)-4-(2-Cyanovinyl)-1-phenyl-1H-indole-3-carboxylate (3ah): purified by column 

chromatography on silica gel (hexane/EtOAc = 3:1); orange solid; 33 mg (54%); mp 128-

129 °C; 1H NMR (400 MHz, CDCl3) δ 3.92 (s, 3H), 5.85 (d, J = 16.5 Hz, 1H), 7.29 (t, J = 7.9 Hz, 

1H), 7.46-7.53 (m, 5H), 7.55-7.60 (m, 2H), 8.14 (s, 1H), 9.21 (d, J = 16.6 Hz, 1H); 13C NMR 

(100 MHz, CDCl3) δ 51.8, 96.1, 109.6, 113.7, 119.0, 120.9, 123.7, 124.8, 125.5, 128.6 

(overlapped), 130.1, 137.3, 137.9, 138.2, 152.0, 164.8; HRMS m/z calcd for C19H15N2O2 ([M+H]+) 

303.1128, found 303.1114. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-(p-tolyl)-1H-indole-3-carboxylate (3ba): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); orange solid; 60 mg 
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(77%); mp 99-102 °C; 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.4 Hz, 3H), 1.50 (sext, J = 7.4 

Hz, 2H), 1.74 (quint, J = 6.9 Hz, 2H), 2.46 (s, 3H), 3.92 (s, 3H), 4.26 (t, J = 6.6 Hz, 2H), 6.42 (d, 

J = 15.8 Hz, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.32-7.41 (m, 4H), 7.44 (d, J = 8.2 Hz, 1H), 7.57 (d, J 

= 7.5 Hz, 1H), 8.09 (s, 1H), 9.31 (d, J = 15.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 14.0, 19.4, 

21.3, 31.0, 51.7, 64.4, 109.6, 112.8, 118.4, 121.4, 123.5, 125.1, 125.3, 129.5, 130.6, 135.6, 137.1, 

138.3, 138.5, 146.0, 165.0, 167.6; HRMS m/z calcd for C24H26NO4 ([M+H]+) 392.1856, found 

392.1866. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-(4-(tert-butyl)phenyl)-1H-indole-3-

carboxylate (3ca): purified by column chromatography on silica gel (hexane/EtOAc = 10:1); 

orange solid; 67 mg (77%); mp 105-107 °C; 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.4 Hz, 

3H), 1.40 (s, 9H), 1.51 (quint, J = 7.5 Hz, 2H), 1.93 (sext, J = 6.9 Hz, 2H), 3.92 (s, 3H), 4.26 (t, J 

= 6.6 Hz, 2H), 6.42 (d, J = 15.8 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 7.38-7.41 (m, 2H), 7.49 (dd, J 

= 0.72, 8.2 Hz, 1H), 7.55-7.58 (m, 3H), 8.11 (s, 1H), 9.31 (d, J = 15.9 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 14.0, 19.4, 31.0, 31.5, 34.9, 51.7, 64.4, 109.6, 112.9, 118.4, 121.4, 123.5, 125.0, 

125.1, 126.9, 129.5, 135.5, 137.1, 138.2, 146.0, 151.6, 165.0, 167.6; HRMS m/z calcd for 

C27H32NO4 ([M+H]+) 434.2326, found 434.2338. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-(4-chlorophenyl)-1H-indole-3-

carboxylate (3da): purified by column chromatography on silica gel (hexane/EtOAc = 10:1); 

orange solid; 41 mg (50%); mp 134-136 °C; 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.4 Hz, 

3H), 1.50 (sext, J = 7.5 Hz, 2H), 1.74 (quint, J = 6.8 Hz, 2H), 3.93 (s, 3H), 4.26 (t, J = 6.6 Hz, 

2H), 6.42 (d, J = 15.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.40-7.50 (m, 3H), 7.53-7.59 (m, 3H), 

8.08 (s, 1H), 9.27 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 14.0, 19.4, 31.0, 51.8, 64.5, 
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110.4, 112.4, 118.7, 121.7, 123.9, 125.1, 126.7, 129.7, 130.3, 134.3, 136.6, 136.7, 138.0, 145.7, 

164.8, 167.6; HRMS m/z calcd for C23H23ClNO4 ([M+H]+) 412.1310, found 412.1326. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-7-methyl-1-phenyl-1H-indole-3-carboxylate 

(3ea): purified by column chromatography on silica gel (hexane/EtOAc = 19:1); white solid; 59 

mg (74%); mp 244.9 °C; 1H NMR (400 MHz, CDCl3) δ 0.98 (t, J = 7.4 Hz, 3H), 1.45-1.54 (m, 

2H), 1.69-1.76 (m, 2H), 1.95 (s, 3H), 3.89 (s, 3H), 4.25 (t, J = 6.6 Hz, 2H), 6.39 (d, J = 15.8 Hz, 

1H), 6.99 (d, J = 7.7 Hz, 1H), 7.37-7.39 (m, 2H), 7.46-7.51 (m, 4H), 7.93 (s, 1H), 9.26 (d, J = 

15.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.8, 19.2, 19.6, 30.8, 51.5, 64.1, 108.9, 117.2, 

121.2, 124.2, 125.3, 126.4, 127.2, 127.8, 128.9, 129.0, 137.0, 139.0, 140.1, 145.9, 164.9, 167.6; 

HRMS m/z calcd for C24H26NO4 ([M+H]+) 392.1856, found 392.1831. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-6-chloro-1-phenyl-1H-indole-3-carboxylate 

(3fa): purified by column chromatography on silica gel (hexane/EtOAc = 19:1); white solid; 55 

mg (67%); mp 198 °C; 1H NMR (400 MHz, CDCl3) δ 0.98 (t, J = 7.4 Hz, 3H), 1.45-1.54 (m, 2H), 

1.69-1.76 (m, 2H), 3.91 (s, 3H), 4.25 (t, J = 6.6 Hz, 2H), 6.40 (d, J = 15.9 Hz, 1H), 7.42-7.48 (m, 

3H), 7.49-7.52 (m, 2H), 7.55-7.60 (m, 2H), 8.09 (s, 1H), 9.22 (d, J = 15.9 Hz, 1H); 13C NMR 

(100 MHz, CDCl3) δ 13.8, 19.2, 30.8, 51.6, 64.4, 109.9, 112.2, 119.6, 121.5, 123.5, 125.3, 128.6, 

129.6, 130.0, 130.5, 137.3, 137.5, 138.4, 144.4, 164.4, 167.1; HRMS m/z calcd for C23H23ClNO4 

([M+H]+) 412.1310, found 412.1343. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-5-methoxy-1-phenyl-1H-indole-3-

carboxylate (3ga): purified by column chromatography on silica gel (hexane/EtOAc = 19:1); 

colorless gum; 47 mg (56%); 1H NMR (400 MHz, CDCl3) δ 0.97 (t, J = 7.4 Hz, 3H), 1.44-1.54 

(m, 2H), 1.69-1.77 (m, 2H), 3.90 (s, 3H), 3.93 (s, 3H), 4.25 (t, J = 6.7 Hz, 2H), 6.84 (d, J = 16.0 

Hz, 1H), 6.98 (d, J = 9.1 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.45-7.47 (m, 3H), 7.53-7.57 (m, 2H), 
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8.07 (s, 1H), 9.04 (d, J = 16.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.8, 19.2, 30.9, 51.6, 56.6, 

64.1, 109.4, 109.9, 112.7, 116.3, 121.3, 125.1, 127.0, 128.1, 129.9, 132.8, 137.3, 138.1, 141.0, 

155.9, 165.1, 168.7; HRMS m/z calcd for C24H26NO5 ([M+H]+) 408.1805, found 408.1820. 

Methyl (E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-benzo[g]indole-3-carboxylate 

(3ha): purified by column chromatography on silica gel (hexane/EtOAc = 19:1); white solid; 65 

mg (73%); mp 228.9 °C; 1H NMR (400 MHz, CDCl3) δ 1.0 (t, J = 7.4 Hz, 3H), 1.47-1.56 (m, 2H), 

1.72-1.79 (m, 2H), 3.93 (s, 3H), 4.28 (t, J = 6.6 Hz, 2H), 6.53 (d, J = 15.7 Hz, 1H), 7.16-7.22 (m, 

2H), 7.37-7.40 (1m, 1H), 7.47-7.51 (m, 2H), 7.57-7.63 (m, 3H), 7.92 (d, J = 8.8 Hz, 2H), 7.95 (s, 

1H), 9.17 (dd, J = 0.6, 15.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.8, 19.2, 30.9, 51.6, 64.3, 

110.2, 118.5, 120.8, 121.8, 122.5, 123.0, 124.8, 126.2, 127.3, 128.5, 129.4, 129.4, 129.9, 131.2, 

132.0, 136.7, 140.7, 146.3, 165.1, 167.4; HRMS m/z calcd for C27H26NO4 ([M+H]+) 428.1856, 

found 428.1864. 

(E)-4-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-phenyl-1H-indole (3aa’’): purified by column 

chromatography on silica gel (hexane/EtOAc = 19:1); yellow solid; 69 mg (72%); mp 65-67 ; 

1H NMR (300 MHz, CDCl3) δ 0.99 (t, J = 7.2 Hz, 3H), 1.47 (sext, J = 7.2Hz, 2H), 1.72 (quin, J = 

6.6 Hz, 2H), 4.25 (t, J = 15.9 Hz, 2H), 6.65 (d, J = 15.9Hz, 1H), 6.97 (dd, J = 0.6, 3.3 Hz, 1H), 

7.23 (t, J = 7.8 Hz, 1H), 7.39-7.58 (m, 8H), 8.13 (d, J = 16.2 Hz, 1H); 13C NMR (75 MHz, 

CDCl3) δ 13.8, 19.0, 30.9, 64.4, 102.0, 112.6, 118.5, 120.6, 122.4, 124.7, 126.98, 127.01, 128.4, 

129.3, 129.7, 136.5, 139.4, 143.1, 167.6; HRMS m/z calcd for C21H22NO2 [M+H]+ 320.16505, 

found 320.16447. 

5,6-Diphenylindolo[1,2-a]quinoline (5aa):3e purified by column chromatography on silica gel 

(hexane/EtOAc = 20:1); yellow solid; 58 mg (78%); mp 196-199 °C; 1H NMR (400 MHz, 

CDCl3) δ 6.38 (s, 1H), 7.10-7.28 (m, 10H), 7.35 (t, J = 8.2 Hz, 2H), 7.40-7.44 (m, 2H), 7.61 (t, J 
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= 7.2 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 98.8, 114.5, 115.4, 121.4, 122.0, 122.1, 122.7, 125.5, 127.1, 127.3, 

128.01, 128.04, 128.46, 128.47, 130.35, 130.39, 131.2, 131.3, 132.9, 133.4, 136.4, 137.5, 137.6, 

137.7; HRMS m/z calcd for C28H20N ([M+H]+) 370.1590, found 370.1599. 

5,6-Di(p-tolyl)indolo[1,2-a]quinoline (5ab):3e purified by column chromatography on silica 

gel (hexane/EtOAc = 20:1); green solid; 68 mg (86%); mp 219-220 °C; 1H NMR (400 MHz, 

CDCl3) δ 2.33 (s, 3H), 2.34 (s, 3H), 6.45 (s, 1H), 7.06-7.11 (m, 6H), 7.12-7.17 (m, 2H), 7.20 

(ddd, J = 0.8, 7.2, 7.2 Hz, 1H), 7.35 (ddd, J = 0.8, 8.4, 8.4 Hz, 1H), 7.40-7.44 (m, 2H), 7.60 (ddd, 

J = 1.6, 7.2, 7.2 Hz, 1H), 7.75 (dd, J = 0.8, 8.0 Hz, 1H), 8.52 (dd, J = 0.8, 8.4 Hz, 1H), 8.66 (dd, 

J = 0.8, 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 21.4, 21.5, 98.7, 114.5, 115.4, 121.3, 121.9, 

122.0, 122.6, 125.8, 125.9, 128.3, 128.5, 128.8, 130.2, 130.4, 131.0, 131.2, 132.8, 133.4, 134.5, 

134.8, 136.4, 136.6, 136.8, 138.0; HRMS m/z calcd for C30H24N ([M+H]+) 398.1903, found 

398.1904. 

5,6-Bis(4-methoxyphenyl)indolo[1,2-a]quinoline (5ac):3e purified by column chromatography 

on silica gel (hexane/EtOAc = 20:1); green solid; 60 mg (70%); mp 264-267 °C; 1H NMR (400 

MHz, CDCl3) δ 3.809 (s, 3H), 3.811 (s, 3H), 6.47 (s, 1H), 6.80-6.84 (m, 4H), 7.10 (d, J = 6.8 Hz, 

2H), 7.19 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 7.2 Hz, 1H), 7.35 (dd, J = 7.1, 7.1 Hz, 1H), 7.42 (dd, J 

= 1.6, 8.4 Hz, 1H), 7.46 (dd, J = 1.6, 8.0 Hz, 1H), 7.61 (dd, J = 1.6, 7.6, 7.5 Hz, 1H), 7.76 (d, J = 

7.2 Hz, 1H), 8.53 (d, J = 8.4 Hz, 1H), 8.66 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

55.30, 55.31, 98.6, 113.5 (overlapped), 114.5, 115.4, 121.3, 121.9, 122.0, 122.7, 125.9, 128.3, 

128.4, 129.8, 130.4, 131.0, 131.5, 132.3, 132.7, 133.4, 136.3, 138.1, 158.5, 158.6; HRMS m/z 

calcd for C30H24NO2 ([M+H]+) 430.1802, found 430.1801. 
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5,6-Bis(4-tert-butylphenyl)indolo[1,2-a]quinoline (5ad):3e purified by column 

chromatography on silica gel (hexane/EtOAc = 20:1); green solid; 67 mg (70%); mp 278-

280 °C; 1H NMR (400 MHz, CDCl3) δ 1.28 (s, 18H), 6.55 (s, 1H), 7.07 (d, J = 8.8 Hz, 2H), 7.14 

(d, J = 8.4 Hz, 2H), 7.22-7.25 (m, 5H), 7.35 (ddd, J = 0.8, 7.2, 7.2 Hz, 1H), 7.42 (ddd, J = 1.6, 

7.2, 7.2 Hz, 1H), 7.53 (dd, J = 1.6, 8.0 Hz, 1H), 7.61 (ddd, J = 1.6, 7.2, 7.2 Hz, 1H), 7.77 (d, J = 

7.6 Hz, 1H), 8.53 (d, J = 8.4 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

31.4 (overlapped), 34.6 (overlapped), 98.6, 114.5, 115.4, 121.3, 121.8, 121.9, 122.6, 124.6 

(overlapped), 125.6, 128.2, 128.5, 130.0, 130.5, 130.9, 131.4, 133.1, 133.4, 134.5, 134.7, 136.4, 

137.9, 149.8, 149.9; HRMS m/z calcd for C36H36N ([M+H]+) 482.2842, found 482.2847. 

5,6-Bis(4-chlorophenyl)indolo[1,2-a]quinoline (5ae):3e purified by column chromatography 

on silica gel (hexane/EtOAc = 10:1); yellow solid; 66 mg (75%); mp 253-256 °C; 1H NMR (400 

MHz, CDCl3) δ 6.44 (s, 1H), 7.12 (ddd, J = 2.0, 2.0, 8.5 Hz, 2H), 7.17-7.25 (m, 3H), 7.27-7.31 

(m, 4H), 7.34-7.40 (m, 2H), 7.45 (ddd, J = 1.4, 8.4, 8..4 Hz, 1H), 7.64 (ddd, J = 1.6, 8.6, 8.6 Hz, 

1H), 7.78 (d, J = 7.2 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.68 (d, J = 8.4 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 99.0, 114.5, 115.6, 121.5, 122.3, 122.4, 122.9, 124.9, 128.2, 128.58 (overlapped), 

128.63, 128.9, 130.3, 130.4, 131.67, 131.70, 132.4, 133.4, 133.5, 135.7, 135.8, 136.4, 137.1; 

HRMS m/z calcd for C28H18Cl2N ([M+H]+) 438.0811, found 438.0811. 

5,6-Bis(4-bromophenyl)indolo[1,2-a]quinoline (5af): purified by column chromatography on 

silica gel (hexane/EtOAc = 10:1); yellow solid; 77 mg (73%); mp 242-344 °C; 1H NMR (400 

MHz, CDCl3) δ 6.44 (s, 1H), 7.05 (dd, J = 1.2, 8.4 Hz, 2H), 7.13 (dd, J = 1.2, 8.4 Hz, 2H), 7.23 

(dd, J = 8.0, 8.0 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.42-7.47 (m, 5H), 

7.64 (ddd, J = 1.6, 8.4 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 8.52 (d, J = 8.8 Hz, 1H), 8.67 (d, J = 

8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 99.1, 114.5, 115.6, 121.5, 121.6, 121.7, 122.2, 122.4, 
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122.9, 124.9, 128.2, 128.9, 130.3 (overlapped), 131.5, 131.6, 131.8, 132.0, 132.8, 133.5, 136.2, 

136.3, 136.4, 137.0; HRMS m/z calcd for C28H18Br2N ([M+H]+) 527.9787, found 527.9782. 

5,6-Bis(4-(trifluoromethyl)phenyl)indolo[1,2-a]quinoline (5ag):3e purified by column 

chromatography on silica gel (hexane/EtOAc = 10:1); yellow solid; 57 mg (56%); mp 240-

243 °C; 1H NMR (400 MHz, CDCl3) δ 6.42 (s, 1H), 7.25-7.33 (m, 4H), 7.38-7.41 (m, 3H), 7.48 

(ddd, J = 2.0, 7.2, 7.2 Hz, 1H), 7.55-7.58 (m, 4H), 7.65-7.70 (m, 1H), 7.79 (d, J = 7.6 Hz, 1H), 

8.54 (d, J = 8.4 Hz, 1H), 8.70 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 99.3, 114.5, 

115.7, 121.6, 122.4, 122.7, 122.8, 124.1 (q, J = 272.0 Hz, overlapped), 124.6, 125.3 (q, J = 3.8 

Hz), 125.4 (q, J = 3.8 Hz), 128.1, 129.2, 129.5 (q, J = 32.5 Hz), 129.7 (q, J = 32.5 Hz) 130.1, 

130.2, 130.3, 130.4, 130.7, 131.5, 131.8, 133.5, 136.5, 136.6; HRMS m/z calcd for C30H18F6N 

([M+H]+) 506.1338, found 506.1337. 

5,6-Bis(3,4-dimethoxyphenyl)indolo[1,2-a]quinoline (5ah): purified by column 

chromatography on silica gel (hexane/EtOAc = 10:1); green solid; 82 mg (84%); mp 204-

207 °C; 1H NMR (400 MHz, CDCl3) δ 3.69 (s, 6H), 3.89 (s, 6H), 6.57 (s, 1H), 6.66-6.92 (m, 5H), 

7.24 (dd, J = 8.0, 8.0 Hz, 2H), 7.37 (ddd, J = 0.8, 8.0, 8.0 Hz, 1H), 7.43 (ddd, J = 1.2, 8.4, 8.4 Hz, 

1H), 7.54 (d, J = 7.6 Hz, 1H), 7.62 (ddd, J = 1.6, 7.2 7.2 Hz, 1H), 7.78 (dd, J = 0.8, 8.0 Hz, 1H), 

8.53 (dd, J = 0.8, 8.8 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 55.89 

(overlapped), 55.91 (overlapped), 98.7, 110.58, 100.64, 110.7, 114.5, 115.4, 121.3, 122.0, 122.1, 

122.8, 123.5, 125.6, 125.9, 128.39, 128.42, 129.7, 130.1, 130.3, 130.4, 131.0, 132.6, 133.4, 136.3, 

137.8, 148.0, 148.1, 148.5, 148.6; HRMS m/z calcd for C32H28NO4 ([M+H]+) 490.2013, found 

490.2014. 

5,6-Di(naphthalen-2-yl)indolo[1,2-a]quinolone (5ai): purified by column chromatography on 

silica gel (hexane/EtOAc = 20:1); yellow solid; 66 mg (70%); mp 205-208 °C; 1H NMR (400 

Page 28 of 38

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 29 

MHz, CDCl3) δ 6.47 (s, 1H), 7.18 (ddd, J = 0.8, 8.0, 8.0 Hz, 1H), 7.34-7.48 (m, 9H), 7.63-7.75 

(m, 9H), 7.87 (s, 1H), 8.57 (d, J = 8.0 Hz, 1H), 8.72 (d, J = 7.6 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 99.0, 99.1, 114.5, 115.5, 121.4, 122.1 (overlapped), 122.8, 125.7, 126.0, 126.09, 126.11 

(overlapped), 126.2, 127.73, 127.77 (overlapped), 127.81, 128.2, 128.6 (overlapped), 129.1, 

130.4, 131.4, 132.4, 132.6, 133.0, 133.11, 133.13, 133.2, 132.49, 133.5, 135.0, 135.1, 136.5, 

137.9; HRMS m/z calcd for C36H24N ([M+H]+) 470.1903, found 470.1903. 

5,6-Di(thiophen-2-yl)indolo[1,2-a]quinoline (5aj): purified by column chromatography on 

silica gel (hexane/EtOAc = 20:1); yellow solid; 24 mg (32%); mp 181-183 °C; 1H NMR (400 

MHz, CDCl3) δ 6.82 (s, 1H), 7.01-7.05 (m, 2H), 7.06 (dd, J = 3.2, 4.8 Hz, 1H), 7.15 (dd, J = 1.2, 

3.6 Hz, 1H), 7.25-7.29 (m, 1H), 7.34 (dd, J = 1.2, 5.2 Hz, 1H), 7.37-7.40 (m, 2H), 7.46 (ddd, J = 

1.2, 8.4, 8.4 Hz, 1H), 7.62-7.66 (m, 2H), 7.82 (d, J = 7.2 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.65 

(d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 99.9, 114.5, 115.4, 121.7, 122.2, 122.5, 123.0, 

125.3, 125.9, 126.5, 126.6, 126.8, 126.9, 127.2, 128.6, 128.9, 129.1, 129.7, 129.96, 129.97, 130.3, 

136.3, 137.85, 137.92; HRMS m/z calcd for C24H16NS2 ([M+H]+) 382.0719, found 382.0718. 

3-Methyl-5,6-diphenylindolo[1,2-a]quinoline (5ba):10 purified by column chromatography on 

silica gel (hexane/EtOAc = 40:1); green solid; 61 mg (79%); mp 194-196 °C; 1H NMR (400 

MHz, CDCl3) δ 2.35 (s, 3H), 6.43 (s, 1H), 7.16-7.33 (m, 11H), 7.34 (ddd, J = 0.8, 7.2, 7.2 Hz, 

1H), 7.40-7.44 (m, 2H), 7.76 (d, J = 8.0 Hz, 1H), 8.51 (d, J = 8.8 Hz, 1H), 8.57 (d, J = 8.4 Hz, 

1H); 13C NMR (100 MHz, CDCl3) δ 21.2, 98.5, 114.4, 115.3, 121.3, 121.8, 121.9, 125.4, 127.1, 

127.2, 128.00, 128.02, 128.5, 129.4, 130.3, 130.4, 131.2, 131.3, 132.2, 132.9, 133.3, 134.4, 

137.61, 137.63, 137.8; HRMS m/z calcd for C29H22N ([M+H]+) 384.1747, found 384.1748. 

3-tert-Butyl-5,6-diphenylindolo[1,2-a]quinoline (5ca): purified by column chromatography 

on silica gel (hexane/EtOAc = 20:1); green solid; 71 mg (84%); mp 210-211 °C; 1H NMR (400 
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MHz, CDCl3) δ 1.26 (s, 9H), 6.44 (s, 1H), 7.18-7.30 (m, 10H), 7.35 (dd, J = 7.2, 7.2 Hz, 1H), 

7.40-7.44 (m, 2H), 7.66 (dd, J = 1.6, 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 8.52 (d, J = 8.4 Hz, 

1H), 8.61 (J = 8.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.6, 34.8, 98.6, 114.6, 115.3, 121.5, 

122.0, 122.1, 125.2, 125.3, 126.0, 127.2, 127.4, 128.1, 128.2, 130.5, 130.6, 131.3, 131.4, 133.46, 

133.51, 134.4, 137.7, 137.9, 138.0, 145.6; HRMS m/z calcd for C32H28N ([M+H]+) 426.2216, 

found 426.2214. 

3-tert-Butyl-5,6-bis(4-tert-butylpheny)lindolo[1,2-a]quinolone (5cd): purified by column 

chromatography on silica gel (hexane/EtOAc = 20:1); green solid; 111 mg (87%); mp 248-

249 °C; 1H NMR (400 MHz, CDCl3) δ 1.275 (s, 9H), 1.282 (s, 9H), 1.291 (s, 9H), 6.52 (s, 1H), 

7.07-7.15 (m, 5H), 7.22-7.34 (m, 3H), 7.34 (dd, J = 7.6, 7.6 Hz, 1H), 7.41 (ddd, J = 1.2, 6.8, 6.8 

Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.65 (dd, J = 2.4, 8.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 8.52 (d, 

J = 8.4 Hz, 1H), 8.60 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 19.9, 31.4, 34.6, 98.2, 

114.4, 115.0, 121.2, 121.5, 121.7, 124.5, 124.6, 125.0, 125.2, 125.6, 125.9, 129.7 130.0, 130.4, 

130.9, 131.2, 133.3, 133.4, 134.2, 134.5, 134.9, 136.7, 137.9, 145.3, 149.7, 149.8; HRMS m/z 

calcd for C40H44N ([M+H]+) 538.3468, found 538.3474. 

3-Chloro-5,6-diphenylindolo[1,2-a]quinoline (5da):10 purified by column chromatography on 

silica gel (hexane/EtOAc = 40:1); green solid; 72 mg (89%); mp 279-280 °C; 1H NMR (400 

MHz, CDCl3) δ 6.48 (s, 1H), 7.15-7.18 (m, 2H), 7.21-7.31 (m, 8H), 7.35-7.39 (m 2H), 7.45 (ddd, 

J = 1.2, 8.4 8.4 Hz, 1H), 7.55 (dd, J = 2.8, 8.4 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 8.45 (d, J = 8.8 

Hz, 1H), 8.59 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 99.5, 114.3, 116.6, 121.6, 122.3, 

122.4, 127.2, 127.47, 127.50, 127.7, 128.07, 128.11, 128.2, 128.3, 130.2, 130.4, 131.1, 132.0, 

132.5, 133.4, 134.9, 136.7, 137.3, 137.4; HRMS m/z calcd for C28H19ClN ([M+H]+) 404.1201, 

found 404.1201. 
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6,7-Diphenylbenzo[g]indolo[1,2-a]quinoline (5ia): purified by column chromatography on 

silica gel (hexane/EtOAc = 20:1); yellow solid; 59 mg (70%); mp 276-278 °C; 1H NMR (400 

MHz, CDCl3) δ 6.48 (s, 1H), 7.21-7.35 (m, 10H), 7.38 (d, J = 7.6 Hz, 1H), 7.42 (dd, J = 0.8, 8.0 

Hz, 1H), 7.4-7.58 (m, 2H), 7.75 (t, J = 8.4 Hz, 2H), 7.81 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 8.68 (d, 

J = 8.4 Hz, 1H), 8.96 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 101.1, 111.8, 114.3, 121.6, 122.1, 

122.8, 125.1, 126.3, 127.1, 127.2, 127.3, 127.4, 127.8, 128.1, 128.2, 128.3, 129.4, 130.37, 130.38, 

131.3, 131.6, 133.1, 133.2, 134.59, 134.62, 137.5, 137.56, 137.60; HRMS m/z calcd for C32H22N 

([M+H]+) 420.1747, found 420.1745. 

9-Butyl-6,7-bis(4-(tert-butyl)phenyl)-9H-benzo[2,3]indolizino[6,5-b]carbazole (5jd): 

purified by column chromatography on silica gel (hexane/EtOAc = 10:1); yellow solid; 40 mg 

(32%); mp 341-343 °C; 1H NMR (400 MHz, CDCl3) δ 0.84 (t, J = 7.3 Hz, 3H), 1.25-1.28 (m, 

2H), 1.30 (s, 9H), 1.32 (s, 9H) 1.75 (quint. J = 6.9 Hz, 2H), 4.10-4.18 (m, 2H), 6.57 (s, 1H), 

7.09-7.25 (m, 6H), 7.29-7.36 (m, 3H), 7.37-7.42 (m, 3H), 7.52 (m, 2H), 7.80 (d, J = 7.4 Hz, 1H), 

8.34 (d, J= 7.7 Hz, 1H), 8.76 (d, J = 8.1 Hz, 1H), 9.34 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

13.8, 20.4, 30.9, 31.5 (overlapped), 34.62, 34.65, 42.6, 98.5, 106.3, 107.6, 108.9, 114.2, 118.9, 

120.9, 121.3, 121.5, 121.7, 122.7, 123.0, 124.65, 124.68, 125.3, 126.5, 130.1, 130.2, 130.4, 130.7, 

131.0, 133.7, 133.8, 135.1, 135.2, 136.9, 137.8, 142.1, 149.79, 149.81; HRMS m/z calcd for 

C46H47N2 ([M+H]+) 627.3734, found 627.3742. 

Ethyl (E)-3-(3-(tert-Butyl)-5,6-diphenylindolo[1,2-a]quinolin-8-yl)acrylate (6a): purified 

by GPC; yellow solid; 40 mg (36%); mp 153-155 °C; 1H NMR (400 MHz, CDCl3) δ 1.26 (s, 9H), 

1.33 (t, J = 7.1 Hz, 3H), 4.27 (q, J = 7.1 Hz, 2H), 6.58 (d, J = 16.0, 1H), 6.75 (s, 1H), 7.17-7.20 

(m, 2H), 7.22-7.25 (m, 2H), 7.26-7.32 (m, 6H), 7.42 (dd, J = 8.1, 8.1 Hz, 1H), 7.45 (d, J = 2.3 Hz, 

1H), 7.66-7.70 (m, 2H), 8.15 (d, J = 16.0 Hz, 1H), 8.56 (d, J = 8.6 Hz, 1H), 8.59 (d, J = 8.8 Hz, 
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1H); 13C NMR (100 MHz, CDCl3) δ 14.5, 31.4 (overlapped), 34.6, 60.6, 96.5, 115.2, 116.0, 118.2, 

120.5, 121.6, 125.2, 126.1, 126.6, 127.2, 127.5, 128.0 (overlapped), 128.3, 130.1, 130.3 

(overlapped), 131.0, 131.1, 134.0, 134.4, 137.3, 137.4, 142.6, 145.9, 167.6; HRMS m/z calcd for 

C37H34NO2 ([M+H]+) 524.2584, found 524.2603. 

Ethyl (E)-5,6-bis(4-(tert-butyl)phenyl)indolo[1,2-a]quinolin-8-yl)acrylate (6b): purified by 

column chromatography on silica gel (hexane/EtOAc = 19:1); yellow solid; 13 mg (11%); mp 

268-270 °C; 1H NMR (400 MHz, CDCl3) δ 1.21 (s, 9H), 1.23 (s, 9H), 1.26 (t, J = 7.2 Hz, 3H), 

4.19 (q, J = 7.2 Hz, 2H), 6.52 (d, J = 16.0 Hz, 1H), 6.54 (s, 1H), 6.98 (d, J = 8.2 Hz, 2H), 7.06 

(d, J = 8.3 Hz, 2H), 7.16-7.19 (m, 5H), 7.34 (t, J = 8.0 Hz, 1H), 7.47-7.61 (m, 3H), 8.11 (d, J = 

16.0 Hz, 1H), 8.48 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

14.3, 31.3 (overlapped), 34.5 (overlapped), 60.4, 96.5, 115.4, 116.0, 118.0, 120.3, 121.5, 123.0, 

124.5, 124.8, 125.6, 126.5, 128.4, 128.6, 129.8, 130.2, 130.7, 131.2, 134.0, 134.1 (overlapped), 

134.2, 135.9, 138.8, 142.5, 149.8, 150.0, 167.5; HRMS m/z calcd for C41H42NO2 [M+H]+ 

580.32155, found 580.32183. 

 

ASSOCIATED CONTENT 

Supporting Information. Results for additional experiments, 1H and 13C NMR spectra of 

products, 24 intermediates of the acrylonitrile insertion with the activation free energy and the 

reaction free energy in the DFT calculations (Figure S1), and atomic coordinates of all calculated 

molecules (XYZ file). This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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