

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu₃) NAM probe (ML289) derived from a closely related mGlu₅ PAM

Douglas J. Sheffler^{a,b,c,†}, Cody J. Wenthur^{a,b,†}, Joshua A. Bruner^{b,†}, Sheridan J.S. Carrington^{a,b}, Paige N. Vinson^{a,b}, Kiran K. Gogi^{a,b}, Anna L. Blobaum^{a,b,c}, Ryan D. Morrison^{a,b,c}, Mitchell Vamos^e, Nicholas D.P. Cosford^e, Shaun R. Stauffer^{a,b,d}, J. Scott Daniels^{a,b,c}, Colleen M. Niswender^{a,b}, P. Jeffrey Conn^{a,b,c}, Craig W. Lindsley^{a,b,c,d,*}

^a Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^b Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^c Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA

^d Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

e Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA

ARTICLE INFO

Article history: Received 2 April 2012 Revised 19 April 2012 Accepted 23 April 2012 Available online 30 April 2012

Keywords:

Metabotropic glutamate receptor 3 mGlu₂ Molecular switch NAM

ABSTRACT

Herein we report the discovery and SAR of a novel metabotropic glutamate receptor 3 (mGlu₃) NAM probe (ML289) with 15-fold selectivity versus mGlu₂. The mGlu₃ NAM was discovered via a 'molecular switch' from a closely related, potent mGlu₅ positive allosteric modulator (PAM), VU0092273. This NAM (VU0463597, ML289) displays an IC₅₀ value of 0.66 μM and is inactive against mGlu₅. © 2012 Elsevier Ltd. All rights reserved.

The metabotropic glutamate receptors (mGlus) are members of the GPCR family C, characterized by a large extracellular amino-terminal agonist (venus fly-trap) binding domain.^{1,2} Eight mGlus have been cloned, sequenced, and assigned to three groups (Group I: mGlu₁ and mGlu₅; Group II: mGlu₂ and mGlu₃; Group III: mGlu_{4,6,7,8}) based on their sequence homology, pharmacology, and coupling to effector mechanisms.^{1,2} Highly subtype-selective allosteric ligands (both PAMs, positive allosteric modulators, and/ or NAMs, negative allosteric modulators) have been developed for mGlu₁, mGlu₂, mGlu₄, mGlu₅, and mGlu₇.³⁻¹¹ However, aside from mGlu₂ PAMs, most Group II ligands do not discriminate between mGlu₂ and mGlu₃; a necessary requirement as these two receptors have highly divergent expression and function.^{12–15} Thus, due to a lack of selective small molecule probes, it has been difficult to discern distinct pharmacological roles for mGlu₃, though numerous studies suggest mGlu3 is involved in glial-neuronal communication and may have therapeutic potential for the treatment of schizophrenia, Alzheimer's disease, and depression.^{3–5,12,16–18}

To date, only two mGlu₃ NAMs have been reported (Fig. 1).^{19,20} The first, reported by Addex, is RO4491533 (1), a dual mGlu₂/ $mGlu_3$ NAM ($mGlu_2$ IC₅₀ = 296 nM, $mGlu_3$ IC₅₀ = 270 nM) based on a benzodiazepinone nucleus that was efficacious in preclinical cognition and depression models.¹⁹ At about the same time, Lilly disclosed LY2389575 (2) as a selective mGlu₃ NAM;²⁰ however, when measuring native coupling of these receptors to G proteincoupled inwardly-rectifying potassium (GIRK) channels via

mGlu₂ IC₅₀ = 296 nM mGlu₃ IC₅₀ = 270 nM

^{2,} LY2389575 LY mGlu₂ IC₅₀ >12.5 µM LY mGlu₃ IC₅₀ = 190 nM VU mGlu₂ IC₅₀ = 17 μ M VU mGlu₃ IC₅₀ = $4.2 \,\mu$ M

^{*} Corresponding author.

E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley).

These authors contributed equally to this work.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.04.112

Figure 1. Structures of mGlu₃ NAMs RO4491533 (1) and LY2389575 (2), both dual mGlu2/mGlu3 NAMs.

thallium flux,²¹ we have observed that **2** is only \sim 4-fold selective for mGlu₃ over mGlu₂ (mGlu₂ IC₅₀ = 17 μ M, mGlu₃ IC₅₀ = 4.2 μ M).²² Thus, there is a critical need for potent and selective mGlu₃ ligands.

In the absence of an HTS campaign to identify novel mGlu₃ NAMs, we elected to take advantage of the propensity of certain mGlu₅ PAM chemotypes to easily modulate the mode of pharmacology or mGlu subtype selectivity with subtle structural alterations, that is 'molecular switches'.^{23–27} One such chemotype that we^{26,27} and others²⁸ have reported on with a high propensity for displaying 'molecular switches' is represented by VU0092273 (**3**), a potent MPEP-site mGlu₅ PAM (Fig. 2).²⁷ Compound **3** also possessed weak mGlu₃ NAM activity (IC₅₀ ~10 μ M, inhibits EC₈₀ by 72%, Fig. 2**B**), but otherwise showed no activity at the six other mGlu subtypes.

Thus, **3** became our lead compound from which to develop a potent and selective mGlu₃ NAM. As we have previously reported, due to the steep nature of allosteric modulator SAR (especially in series prone to 'molecular switches'), we pursued an iterative parallel synthesis approach for the chemical optimization of **3**.^{3,4} Previous work in this scaffold indicated that mGlu₅ PAM activity could be greatly diminished with substitution other than fluorine on the distal aryl ring, as well as with modifications to the amide moiety.²⁶ Therefore, our first generation library design (Fig. 3) initially held the 4-hydroxypiperidine amide constant, while surveying a diverse array of functionalized aryl/heteroaryl rings as well as other aliphatic groups. Once mGlu₃-preferring modifications were identified, these would be maintained while an amide scan would be performed to improve mGlu₃ NAM activity while eliminating mGlu₅ PAM activity.

Our first 48-member library was prepared as shown in Scheme 1, and purified, to >98% purity, by reverse phase chromatography.²⁹ Commercial 4-iodobenzoic acid **4** was coupled to 4-hydroxypiperdine, under standard EDC/HOBt conditions, to provide amide **5** in 95% yield. Once synthesized, **5** then underwent Sonogashira coupling reactions with a diverse array of 48 functionalized terminal acetylenes to provide analogs **6**.³⁰ True to allosteric modulator SAR, 47/48 of the analogs were either inactive on mGlu₃ (IC₅₀ >10 μ M) or only afforded modest inhibition (5–50% Glu Min) of the glutamate EC₈₀. Only one compound, **7** (VU0457299), possessing a 4-methoxyphenyl moiety, displayed mGlu₃ NAM potency below 10 μ M (mGlu₃ IC₅₀ = 3.8 μ M, % Glu Min = 10.4 ± 2.1).

Figure 3. Library optimization strategy for VU0092273 (3) to improve $mGlu_3 NAM$ activity while simultaneously eliminating $mGlu_5 PAM$ activity.

Scheme 1. Reagents and conditions: (a) EDC, DMAP, DCM, DIPEA, 95%; (b) 20% CuI, 5% Pd(PPh₃)₄, 48 acetylenes (1.1 equiv), DMF, DIEA, 60 °C, 1 h, 15–90%.

Interestingly, the regioisomeric 2-OMe and 3-OMe congeners were inactive.

Based on these data, the next round of library synthesis held the 4-methoxyphenyl moiety in **7** constant, and 48 amines³¹ were employed to survey alternative amides. This library, prepared according to Scheme 2, was far more productive, providing several analogs **10** with mGlu₃ NAM potencies below 10 μ M; however, SAR was still quite steep (Table 1). In general, polar (**10a**–**e**) and basic substituents (**10f** and **10g**) were the most efficacious. Of great interest was the enantioselective mGlu₃ inhibition displayed by the (*S*)-piperidine carboxylic acid **10c** (IC₅₀ = 5.7 μ M) and the (*R*)-enantiomer **10d** (IC₅₀ >>10 μ M, essentially inactive). This result led us to resolve racemic 3-hydroxymethyl analog **10e**

Figure 2. (A) Structure of VU0092273 (**3**), a potent mGlu₅ PAM (pEC₅₀ = 6.57 ± 0.09 , EC₅₀ = 0.27μ M). (B) mGlu₅ PAM concentration–response curve (CRC) in presence of an EC₂₀ of glutamate. (C) mGlu₃ antagonist CRC **3** displayed weak NAM activity at mGlu₃ (IC₅₀ > 10 μ M, inhibits EC₈₀ ~72%).

Scheme 2. Reagents and conditions: (a) (i) 20% CuI, 5% $Pd(PPh_3)_4$, 4-OMePh acetylene (1.1 equiv), DMF, DIEA, 60 °C, 1 h, 82%;(ii) KOH, aq MeOH, 95%; (b) HNR₁R₂, EDC, DMAP, DCM, DIPEA, 40–96%.

Table 1

Structures and activities of analogs 10

Compd	NR ₁ R ₂	pIC ₅₀ ± SEM	$I{C_{50}}^a(\mu M)$	%Glu Min ^b ± SEM
7	§−NOH	5.42 ± 0.04	3.8	10.4 ± 2.1
10a	ξ−N OH	5.30 ± 0.06	5.0	4.4 ± 0.7
10b	§−NOH	5.61 ± 0.07	2.5	-1.1 ± 0.5
10c	ξ-N_CO2H	5.24 ± 0.01	5.7	2.2 ± 1.1
10d	.CO₂H		>10	16.4 ± 2.5
10e	ξ-N	5.69 ± 0.04	2.1	0.5 ± 0.4
10f	}-N_N-<		>10	7.6 ± 3.2
10g			>10	9.6 ± 2.1

^a Measured in an mGlu₃ GIRK assay.

^b % Glu Min is the % inhibition of the compound on an EC_{80} concentration of glutamate. Values represent the mean ± standard error mean for three independent experiments performed in triplicate.

(IC₅₀ = 2.1 μM), which afforded a full block of the EC₈₀. Following Scheme 2, both the (*R*)- and (*S*)-enantiomers of **10e**, **11** (VU0463597) and **12** (VU0463593) were prepared and assayed in the mGlu₃ GIRK assay (Fig. 4). Here, **11** (pIC₅₀ = 5.83 ± 0.05, IC₅₀ = 1.5 μM) was twofold more potent than **12** (pIC₅₀ = 5.49 ± 0.02, IC₅₀ = 3.3 μM), but both afforded full blockade (% Glu Mins of -4.4 ± 1.9 and -1.7 ± 1.3 , respectively). Efforts now shifted towards more fully characterizing **11** (VU0463597).

Figure 4. Structures and activities of (R)-11 and (S)-12, mGlu₃ NAMs.

We next evaluated the selectivity of **11**(VU0463597) between mGlu₂ and mGlu₅. Utilizing our mGlu₂ GIRK line, the IC₅₀ was much greater than 10 μ M, with the CRC not reaching baseline at the highest concentration tested (30 μ M) (Fig. 5A, triangles). Similarly, **11** was inactive for potentiating an EC₂₀ concentration of glutamate (Fig. 5**B**, triangles) or inhibiting an EC₈₀ concentration of glutamate (Fig. 5**C**, triangles) in our standard mGlu₅ calcium assay. As our calcium assays typically drive our mGlu drug discovery programs, we also evaluated **11** (VU0463597) in an mGlu₃ calcium assay in which mGlu₃ is co-expressed with the promiscuous G protein G_{\alpha15} (Fig. 5B and C, squares). Here, we see slightly improved mGlu₃ NAM potency (pIC₅₀ = 6.18 ± 0.03, IC₅₀ = 0.66 μ M, % Glu Min = 2.1 ± 0.3) compared to the mGlu₃/GIRK line. To verify that **11** antagonizes mGlu₃ via a non-competitive (allosteric) mechanism of action, we next performed a Schild analysis. In these

Figure 5. In vitro molecular pharmacology characterization of **11** (VU0463597). (A) Concentration–response curves of mGlu₂ and mGlu₃ GIRK (antagonist mode). (B) mGlu₃ calcium (antagonist mode) and mGlu₅ calcium (PAM mode). (C) mGlu₃ calcium (antagonist mode) and mGlu₅ calcium (antagonist mode).

studies, 11 dose-dependently induced a rightward shift and decreased the maximal efficacy of the orthosteric agonist glutamate (Fig. 6), consistent with a non-competitive (allosteric) mechanism of action. Thus, starting from a very potent mGlu₅ PAM $(EC_{50} = 0.27 \mu M)$, we were able to optimize and develop a potent and selective mGlu₃ NAM with high selectivity (~15-fold) versus mGlu₂ and complete specificity versus mGlu₅.

With this potent and selective mGlu₃ NAM in hand, we began profiling 11 in a battery of ancillary pharmacology and DMPK assays to assess the quality of this probe for potential in vivo studies. A Lead Profiling Screen at Ricerca³² (68 GPCRs, ion channels and transporters screened at 10 μ M in radioligand binding assays) failed to identify any off target activities for 11 (no inhibition >25% at 10 μ M). In our tier 1 in vitro DMPK screen, compound **11** displayed no P450 inhibition in human liver microsomes (IC₅₀ >30 µM vs 3A4, 2C9, 2D6 and 1A2), high plasma protein binding with fraction unbound (f_u) levels between 1% and 2% in both rat and human plasma, respectively; f₁₁ determined in rat brain homogenate was 1%. Intrinsic clearance (CL_{int}) determined in rat and human liver microsomes indicated that compound **11** was rapidly cleared in vitro (rat, CL_{int} = 240 mL/ min/kg; human, CL_{int} = 571.8 mL/min/kg). An in vitro to in vivo clearance correlation was established, as compound 11 was found to be a moderately cleared compound in rat (CL = 33 mL/min/kg) following intravenous administration (1 mg/kg); the low volume of distribution at steady state (V_{ss} 0.6 L/kg) and moderate clearance produced a relatively short $t_{1/2}$ (16.8 min) in vivo. Metabolite ID studies in rat and human liver microsomes (Fig. 7) indicated that the principle biotransformation pathway was P450-mediated O-demethylation of 11 to generate the phenol 13, a metabolite that was subsequently shown to be inactive at mGlu₃ and mGlu₅.

As our earlier SAR work indicated that the methyl ether was critical for mGlu₃ NAM activity, we performed an IP plasma:brain level (PBL) study to determine if we could achieve meaningful CNS exposure if first-pass metabolism was bypassed. Significantly, in a 10 mg/kg (10% Tween80 in 0.5% methylcellulose) IP plasma/brain level (PBL) study, we observed a brain (16.3 µM)/ plasma (9.7 µM) ratio of 1.67, indicating that **11** (VU0463597) was indeed centrally penetrant. Based on brain homogenate binding studies, this correlates to ~163 nM free in rat brain at the 10 mg/kg dose, a value below the mGlu₃ IC₅₀ (0.66 μ M); thus, in order to provide adequate target engagement, a 50 mg/kg dose

Figure 6. Schild analysis of 11 (VU0463597). The concentration-response of glutamate for mGlu₃ GIRK is non-competitively inhibited by 11.

Figure 7. Oxidative O-dealkylation of 11 in rat and human liver microsomes.

may be required for in vivo efficacy with this first generation mGlu₃ NAM probe.

This project was an MLPCN Medicinal Chemistry FastTrack program, and based on the profile of 11, it was declared an MLPCN probe and assigned the identifier ML289.³³ As such, ML289 is freely available upon request.³⁴

In summary, we have developed a potent, selective (>15-fold vs mGlu₂) and centrally penetrant mGlu₃ NAM **11** (VU0463597 or ML289) with a good overall CYP profile. ML289 is also highly selective versus mGlu₅, which is notable as our lead was a $0.27 \,\mu\text{M}$ mGlu₅ PAM, and suggests ligand cross-talk between allosteric binding sites on mGlu₃ and mGlu₅. Once again, a subtle 'molecular switch', in the form of a *p*-OMe moiety, conferred selective mGlu₃ inhibition over mGlu₅ potentiation. Further chemical optimization efforts, as well as detailed molecular pharmacological characterization of ML289, are in progress and will be reported in due course.

Acknowledgments

This work was supported by grants from the NIH. Vanderbilt is a Specialized Chemistry Center within the Molecular Libraries Probe Centers Network (U54 MH84659).

References and notes

- 1. Schoepp, D. D.; Jane, D. E.; Monn, J. A. Neuropharmacology 1999, 38, 1431.
- Conn, P. J.; Pin, J.-P. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205. 2.
- Melancon, B. J.; Hopkins, C. R.; Wood, M. R.; Emmitte, K. A.; Niswender, C. M.; 3. Christopoulos, A.; Conn, P. J.; Lindsley, C. W. J. Med. Chem. 2012, 55, 1445.
- 4. Conn, P. J.; Christopolous, A.; Lindsley, C. W. Nat. Rev. Drug Disc. 2009, 8, 41. 5
- Conn, P. J.; Lindsley, C. W.; Jones, C. Trends Pharmacol. Sci. 2009, 30, 25.
- 6. Robichaud, A. J.; Engers, D. W.; Lindsley, C. W.; Hopkins, C. R. ACS Chem. Neurosci. 2011, 2, 433.
- 7. Sheffler, D. J.; Pinkerton, A. B.; Dahl, R.; Markou, A.; Cosford, N. D. P. ACS Chem. Neurosci. 2011, 2, 382.
- 8 Owen, D. R. ACS Chem. Neurosci. 2011, 2, 394.
- Emmitte, K. A. ACS Chem. Neurosci, 2011, 2, 443. 9
- Stauffer, S. R. ACS Chem. Neurosci. 2011, 2, 450. 10.
- Suzuki, G.; Tsukamoto, N.; Fushiki, H.; Kawagishi, A.; Nakamura, M.; 11. Kurihara, H.; Mitsuya, M.; Ohkubo, M.; Ohta, H. J. Pharmacol. Exp. Ther. 2007, 323, 147,
- Harrision, P. J.; Lyon, L.; Sartorius, L. J.; Burnet, P. W. J.; Lane, T. A. J. Psychopharmacol. 2008, 22, 308. 12.
- 13.
- Kew, J. N. C.; Kemp, J. A. *Psychopharmacology* **2005**, *179*, 4.
 Woltering, T. J.; Wichmann, J.; Goetschi, E.; Knoflach, F.; Ballard, T. M.;
 Huwyler, J.; Gatti, S. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6969. 14.
- 15. Corti, C.; Battaglia, G.; Molinaro, G.; Riozzi, B.; Pittaluga, A.; Corsi, M.; Mugnaini, M.; Nicoletti, F.; Bruno, V. J. Neurosci. 2007, 27, 8297.
- 16. Moghaddam, B.; Adams, B. W. Science 1998, 281, 1349.
- Matrrisciano, F.; Panaccione, I.; Zusso, M.; Giusti, P.; Tatarelli, R.; Iacovelli, L.; 17 Mathe, A. A.; Gruber, S. H.; Nicoletti, F.; Girardi, P. Mol. Psychiarty 2007, 12, 704. Markou, A. Biol. Psychiatry 2007, 61, 17. 18.
- Campo, B.; Kalinichev, M.; Lambeng, N.; El Yacoubi, M.; Royer-Urios, I.; 19
- Schneider, M.; Legarnd, C.; Parron, D.; Girard, F.; Bessif, A.; Poli, S.; Vaugeois, J.-M.; Le Poul, E.; Celanire, S. J. Neurogenet. 2011, 24, 152.
- 20. Caraci, F.; Molinaro, G.; Battaglia, G.; Giuffrida, M. L.; Riozzi, B.; Traficante, A.; Bruno, V.; Cannella, M.; Mero, S.; Wang, X.; Heinz, B. A.; Nisenbaum, E. S.;

Britton, T. C.; Drago, F.; Sortino, M. A.; Copani, A.; Nicoletti, F. Mol. Pharm. 2011, 79.618.

- 21. Niswender, C. M.; Johnson, K. A.; Luo, Q.; Ayala, J. E.; Kim, C.; Conn, P. J.; Weaver, C. D. Mol. Pharm. 2008, 73, 1213.
- 22. CRCs for LY2389575 (2) in our GIRK assays:

- 23. Sharma, S.; Rodriguez, A.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18, 4098.
- Sharma, S.; Kedrowski, J.; Rook, J. M.; Smith, J. M.; Jones, C. K.; Rodriguez, A. L.; 24. Conn, P. J.; Lindsley, C. W. J. Med. Chem. **2010**, 52, 4103. Wood, M. R.; Hopkins, C. R.; Brogan, J. T.; Conn, P. J.; Lindsley, C. W.
- 25. Biochemistry 2011, 50, 2403.
- 26 Williams, R.; Manka, J. T.; Rodriguez, A. L.; Vinson, P. N.; Niswender, C. M.; Weaver, C. D.; Jones, C. K.; Conn, P. J.; Lindsley, C. W.; Stauffer, S. R. Bioorg. Med. Chem. Lett. 2011, 21, 1350.
- Rodriguez, A. L.; Grier, M. D.; Jones, C. K.; Herman, E. J.; Kane, A. S.; Smith, R. L.; 27. Williams, R.; Zhou, Y.; Marlo, J. E.; Days, E. L.; Blatt, T. N.; Jadhav, S.; Menon, U.; Vinson, P. N.; Rook, J. M.; Stauffer, S. R.; Niswender, C. M.; Lindsley, C. W.; Weaver, C. D.; Conn, P. J. Mol. Pharm. 2010, 78, 1105.
- 28. Ritzen, A.; Sindet, R.; Hentzer, M.; Svendsen, N.; Brodbeck, R. M.; Bungaard, C. Bioorg. Med. Chem. Lett. 2009, 19, 3275.
- Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W. J. Comb. 29. Chem. 2003, 5, 322.

30. Representative acetylenes employed in the 48-member library:

31. Representative amines employed in the 48-member library:

- 32. For full information on the targets in the Lead Profiling Screen at Ricerca, please see: www.ricerca.com.
- 33. For information on the MLPCN please see: http://mli.nih.gov/mli/mlpcn/.
- То request your free sample of ML289, please email: 34. craig.lindsley@vanderbilt.edu.