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Abstract—Pyrrolo-benzylisoquinolines were prepared as target compounds and their antiplatelet aggregation activity, adreno-
receptor affinity, and cytotoxicity were screened. Compounds 1d–9d showed specific antiplatelet aggregation activity induced by
arachidonic acid and collagen. Among them, 8d and 9d exhibited better activity than the reference drug, aspirin and 9d also showed
inhibition of platelet aggregation by all four inducers.
# 2003 Elsevier Science Ltd. All rights reserved.

Introduction

Benzylisoquinolines, a class of the most commonly iso-
lated alkaloids in higher plants, have been studied for
their rich structural and pharmacological diversity.1�5

They also play an important role in the biosynthetic
pathway of morphines and papaverines.6 Benzylisoqui-
noline derivatives have been extensively studied for their
interaction with various biological functions, such as
analgesic,7,8 muscle relaxation,9 anticancer activity,10,11

and cardiovascular activities.12�15 Among the benzyl-
isoquinoline derivatives, pyrrolo-benzylisoquinolines
were prepared as intermediates in the total synthesis of
aporphines and protoberberines.16,17 However, the bio-
logical activities of these compounds have never been
discussed. In our ongoing research of Annonaceous
alkaloids, pyrrolo-benzylisoquinolines, possessing an
interesting skeleton, were prepared and their biological
activities were studied.

Chemistry

Target compounds 1d–9d18 were synthesized as illu-
strated in Scheme 1. Substituted phenylacetic acids 1a–9a

were treated with thionyl chloride in dry dichloro-
methane to form the active acyl chloride and then com-
pound 2-(30,40-dimethoxyphenyl)ethylamines were
added to yield the amide derivatives 1b–9b. The amides
were purified and poured into a mixture of dry aceto-
nitrile and excess phosphoryl chloride. The resulting
mixture was refluxed for 3 h to give the products, 3,4-
dihydrobenzylisoquinolines 1c–9c via Bischler–Napier-
alski reaction. Compounds 1c–9c were not purified
because of their instability. Diluted oxalyl chloride in
CH2Cl2 was added dropwise to the mixture of crude 1c–9c
and CH2Cl2 under N2 at �20 �C. The deep red final
products, 1d–9d, were purified and identified by spectral
data to confirm the structures.

Pharmacological Evaluation and Discussion

As we mentioned above, benzylisoquinolines are asso-
ciated with various pharmacological functions. Based
on these surveys, we studied the antiplatelet aggregation
activity of compounds 1d–9d. In the platelet aggregation
assays, four inducers were employed, including AA
(arachidonic acid), Col (collagen), PAF (platelet acti-
vating factor), and Thr (thrombin). Table 1 shows the
results of the experiments.

All compounds generally showed inhibitory effects on
platelet aggregation induced by AA and Col in a con-
centration-dependent manner. This specific inhibitory
effect shows similarity to the reference drugs, aspirin. In
comparison of the reference drug with these tested
compounds, 8d and 9d showed better antiaggregatory
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activity with IC50 15–21 mM and 6�9 mM induced by
AA and Col, respectively, than aspirin and 5d demon-
strated almost equal potency as aspirin. Compound 9d,
the most potent derivative, showed additional inhibition
on platelet aggregation induced by the other two indu-
cers, PAF and Thr. This result revealed that 9d may act
by a different mechanism from other derivatives.

In the structure–activity relationship of these synthe-
sized compounds, the substitution variation at the ben-
zyl group slightly changed the activity: 20-substituted

pyrrolobenzylisoquinolines possessed lower antiplatelet
activity than 30 or 40-substituted ones. The presence of
the methoxy group on the benzyl group exhibited better
activity than halogenated ones. Compound 9d, the
derivative that fits in with the two conditions showed
the best activity among these compounds.

Besides the antiaggregation activity, compounds 2d, 3d, 6d,
7d, and 9d were submitted to screen the b1 and b2 adreno-
receptor binding affinities. However, all of them demon-
strate mild affinity to both b1 and b2 receptors (Fig. 1).

Cytotoxic activity was also evaluated for compounds
1d–9d.21 Preliminary results of cytotoxicity toward
HONE-1 (human nasopharyngeal carcinoma) and
NUGC (human gastric cancer) cell lines revealed that
all compounds showed no activity against two cell lines
in a concentration of 10 mM-with survival percentage
86–105% and 93–104%, respectively, in comparison
with the DMSO vehicle control.

In conclusion, we synthesized nine pyrrolo-benzyliso-
quinolines that displayed a specific activity toward pla-
telet aggregation and have provided a new active
skeleton in the development of antiplatelet aggregation
drugs. Compound 9d, the most potent alkaloid, could
be further investigated as the lead compound and the
relationship between 3-dimensional structure and activ-
ity of these derivatives should be the focus in a
continuing study.
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Table 1. Antiplatelet aggregation activity of compounds 1d–9d19

IC50 (mM)a,b

AA (100mM) COL (10mg/mL) PAF (2ng/mL) Thr (0.1U)

Aspirin 44.6�9.8 22.4�4.1 >100 >100
1d 78.3�3.9 44.9�10.8 >100 >100
2d 53.8�10.7 37.5�5.6 >100 >100
3d 52.8�8.6 30.0�1.7 84.8�8.7 >100
4d >100 39.8�6.1 >100 >100
5d 45.5�10.5 23.3�3.9 >100 >100
6d 72.7�4.3 29.8�0.8 >100 >100
7d 65.5�4.1 35.8�12.7 >100 >100
8d 21.0�2.6 6.1�1.2 >100 >100
9d 15.2�3.8 9.15�2.4 33.2�1.3 30.7�1.1

aPlatelet were preincubated with DMSO (0.5%, control), aspirin or
tested compounds at 37 �C for 3 min, then four inducers were added.
bThe IC50 values were presented as means�S.E. (n=3).

Figure 1. Inhibition of [3H]CGP-12177 specific binding to guinea pig
b1 (ventricular membrane) and b2 (lung membrane) adrenoreceptor by
2d, 3d, 6d, 7d, and 9d.20

Scheme 1. Synthesis of pyrrolo-benzylisoquinoline derivatives 1d–9d.
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