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Abstraet: We report the synthesis ofa calix[4]arene bridged by a cryptand unit and a crown ether 
chain in 1,3-alternate conformation Preliminary complexation properties with alkali metals are 
also described Copyright © 1996 Elsevier Science Ltd 

Calixarenes, and in particularly calix[4]arenes, are becoming an important class of 
compounds in supramolecular chemistry. L2 They are readily amenable to chemical modification at 
the phenolic hydroxy groups leading to molecules with selective host-guest chemistry. 1,2 In order to 
obtain specific properties, a number of moieties have been attached to the calixarene platform to 
give precise molecular architectures as manifested in their shape, size, and conformation) For 
example, the 1,3-capping of calix[4]arene provide calix-mono-crowns 4'5 or calix-bis-crowns 6"7 
which have a high selectivity towards alkali cations. Azaoxa crown ether chains have been attached 
to a calix[4]arene or calix[4]-crowns to provide symmetrical calix-bis-aza crowns 8 or 
unsymmetrical calix-aza crown-crowns, 9 respectively. The cryptand unit has been fixed to 
calix[4]arene to provide a calixcryptand ~° which was shown to complex copper(II). Similarly, a 
calixcryptand has been prepared by condensing the different ring-size cryptand precursor units to 
syn-1,3-diacid dichloride ofp-tert-butyl calix[4]arene. ~ 

Here, we have developed a strategy to synthesize calix[4]cryptand-crown-6 8 by passing 
through calix-aza crown-crown ether intermediate and ending with the formation of the cryptand 
unit by the glycolic ditosylate chain. We report also a preliminary study on the complexation 
behavior of 8 by using proton nuclear magnetic resonance spectroscopy (IH-NMR) and fast-atom 
bombardment mass spectroscopy (FAB (+) MS). 
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Scheme 1. Synthetic pathway to unsymmetrical calix[4]cryptand crown-6 8 

The syntbesis of S, shown in Scheme 1, began by the condensation of aldehyde 112 with 0.5 
equiv, of 1,8-diamino-2,6-dioxa octane in a mixture of 1:1 acetonitrile : methanol with reflux for 24 
h., leading to a quantitative yield of Schiffbase 2. Compound 2 was directly reduced by 8 equivs, of  
NaBI-h in l : l  THF : ethanol at rt for 4 h. After treatment with hydrochloric acid and NaOH in 
methanol respectively, diaza dioxa 3 was extracted from CH2CI2/H20 in quantitative yields. 
Compound 3 was reacted with 4 equivs, of  tosylchloride in the presence of 5 equivs, of  Et3N in 
CH2Cl2 for 24 h. at ft. The residue was purified on silicagel column by using 85:15 CH2Cl2:acetone 
as eluent to give the tetra(N,O)tosylate 4 as a transparent oil in 65% yield. By the conventional 
method a, the 1,3-capping of calix[4]arene was carried out by reaction of I equiv, of 4 in refluxing 
acetonitrile in the presence of K2CO3 for 2 weeks. After purification by silicagel chromatography 
using 97:3 CH2Cl2:acetone as eluent, the calix[4]-diaza dioxa 5 was obtained in 48% yield. 
Compound 5 was deduced to be in cone conformation by the appearance of an AB system at 4.29 
and 3.27 ppm (d = 12.7 Hz) for the protons of methylene bridges. As described in our former 
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works 8'9'12, compound 5 was bridged with 1 equiv, of pentaethylene glycol ditosylate in the 
presence of K2CO 3 in acetonitrile under reflux for 24 h. The desired product 6 t+ was eluted on a 
silicagei column with 85:15 CH2Cl2:acetone as eluent and was shown to be in 1,3-alternate 
conformation due to the presence o fa  singlet at 3.83 ppm for the protons of methylene bridges. The 
detosylation of 6 was achieved by treatment of 6 with 25 equivs, of LiAIH4 in freshly distilled THF 
under reflux for 48 h. as described in literature 13 to give calix[4]-diaza dioxa-crown-6 7 ts in 38 % 
yield after purification on silicagel by using 70:30 CH2C12:methanol as eluent. N-cyclocondensation 
to cryptand unit was performed by reacting 7 with 1 equiv, of triethylene glycol ditosylate in the 
presence of 10 equivs, of Na2CO3 in acetonitrile under reflux for 1 week.t6 The residue was purified 
by silicagel chromatography using 90:10 CH2Cl2:methanol as eluent to provide calix[4]-cryptand- 
crown-6 817 in 8% yield. 

Preliminary complexation studies of calix[4]cryptand crown-6 8 with potassium picrate 
(K+Pic ) and cesium picrate (Cs+Pic ) were realized by means of proton nuclear magnetic resonance 
spectroscopy (IH-NMR) and fast-atom bombardment mass spectroscopy (FAB (+) MS). After a 
period of 7 days reaction between solid potassium picrate and a chloroform solution of 8 the ratio 
of metal to ligand in solution, as estimated by integration of the picrate proton resonance versus 
those for the glycolic chains, was 1:1. This ratio was also evidenced by the FAB (+) MS data 
presenting M + = 1191.6 (70%) for the 1:1 complex and M + - K + = 1153.6 (100%) corresponding to 
the free ligand. For the 1:1 complex of potassium picrate, we observed the shifts of the aromatic 
protons from 7.47 ppm (d, J = 7,3 Hz) to 7.40 ppm (d, J = 7.1 Hz) and of NCH2CH2 signal from 
3.09 ppm (t, d = 6.2 Hz) to 2.70 ppm ((br)s) which implied the potassium to be located in the 
cryptand cavity. Such an upfield shift has already been described for potassium [2.2.2] cryptate 18. 
Similarly, we isolated the 1:1 complex of 8 with cesium picrate. FAB (+) MS data showed the only 
presence of M + = 1258.4 (100%) indicating the cesium complex to be stronger than the potassium 
one. For the 1:1 cesium complex, no shift was observed for the NCHeCH2 triplet. So the cesium was 
located in the crown-6 chain. The location of the cesium cation in the glycolic chain may also be 
assumed due to evidence of highly selective complexation of cesium by calix[4]crowns-6 tg. After 
the formation of 1:1 complexes, we tried to form the 1:1:1 hetero-bimetallic-complexes by adding 
the picrate salts alternatively. We reacted potassium picrate with the 1:1 complex of cesium picrate 
and the cesium picrate with the 1:1 complex of potassium picrate. After 6 days, 1:2 complexes were 
detected by tH-NMR which gave the same spectra. From the shift of the N C H ~ H 2  triplet in a very 
similar manner to that of the 1:1 complex with potassium, we deduced the ligand 8 to complex 
potassium in the cryptand unit and the cesium in the glycolic chain. By FAB (+) MS of the 1:1:1 
complex we could not detect the 8.K+.Cs + signal but we observed the mass signal corresponding to 
the 1:1:1 complexes (8.Na*.Cs ÷) probably due to the presence of sodium in the matrix. 
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