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Abstract: The photochemistry of sterieally hindered enones 1 and 2 is described. A novel photorearrangement occurs in 
both systems which involves carbonyl attack on the adjacent phenyl ring, expansion of that ring to a cycloheptatriene and 
subsequent photochemically induced 1,7-phenyl migration. Copyright © 1996 Elsevier Science Ltd 

The photochemistry of enones has received a great deal of attention over the past twenty years. 1 

Most studies have dealt with the mechanistically interesting reactions of cyclic enones. Acyclic enones, 

in contrast, tend to exhibit less complex photochemistry, since they can dissipate the energy of excitation 

via cis-trans isomerization about the carbon-carbon double bond. We have examined the photochemistry 

of the acyclic enones 1 and 2 (Schemes 1 and 2, respectively) and observed a unique 

photorearrangement which probably is facilitated by the extreme steric congestion in these molecules. 

Enone 1 is prepared through the photochemical addition of phenanthrenequinone to 

diphenylketene which produces spirolactone 3 (Scheme 1). 2 Subsequent photodecarboxylation of 3 

produces 1. 3 Although the carbon-carbon double bond of enone 1 is acyclic, this system has been 

constrained in an s-cis conformation with a high degree of steric congestion between the cis 13---phenyl 

group and the carbonyl oxygen. Based upon x-ray crystal data and semi-empirical calculations, 4 the 

distance between the carbonyl oxygen and the ipso position of the cis I]-phenyl group is only 3.02 A (x- 

ray) or 3.09 A (calculations). When enone 1 is irradiated in benzene with low intensity UV light (350 

nm), two photoproducts are formed: triene 4 (32%) and cyclobutene 5 (9%). High-intensity argon ion 

laser-jet irradiation (333, 351 and 364 nm lines) 5 of I in benzene afforded the new photoproduct 6 in 

addition to 4 and 5. Further studies confirmed that when 6 is irradiated under low-intensity conditions, 

it undergoes a very facile 1,7-phenyl migration to form 4 and a somewhat less favorable, electrocyclic 

ring closure to form the cyclobutene 5. In contrast, 4 is stable under both low- and high-intensity 

conditions with no reverse 1,7-phenyl migration to form 6 being detected. These observations are 

consistent with calculations 4 which indicate that the ground state of 4 is about 2.1 kcal/mol lower in 

energy than that of 6, and that the vertical excited singlet state of 4 is about 13 kcal/mol lower. 

The exclusive formation of 6 under high-intensity conditions was rather puzzling at first. Since 

the formation of 6 appears to require only a single photon, its formation would not be expected to be 

favored by high-intensity (multiple-photon) conditions. This apparent inconsistency is readily 

understood in terms of the mode of irradiation in the argon laser-jet apparatus. The primary 
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photoproduct of this reaction is expected to be the norcaradiene 76 which either does not absorb strongly 

at the laser lines or is photochemically inert. 7 Furthermore, if the lifetime of 7 significantly exceeds its 

residence time in the laser focal region (ca. 10 Its), then cycloheptatriene 6 would be formed in the dark 

after passing through the focal region of the laser, and would survive to be isolated. 
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In an effort to see whether the s-cis constraint and steric congestion present in enone I play a role 

in this photoreaction, the enone 28 was also studied (Scheme 2). Enone 2 has much less restricted 

rotation about the formal single bond between the carbonyl and olefin moieties. The low-intensity 

photochemistry of enone 2 produced two photoproducts, triene 8 (12%), and the phenanthrene 9 (35%). 

High-intensity laser-jet irradiation of 2 strongly suppress the formation of both 8 and 9 in a variety of 

solvents including C6H6 and CH3CN. Apparently secondary absorption by the intermediates 10 and the 

dihydrophenanthrene 11 leads to their efficient return to starting material under these conditions. 9 

Nevertheless, the mechanism for the formation of triene 8 seems to be analogous to that of triene 4 and is 

outlined in Scheme 2. We have examined other sterically congested and constrained enones, including 

13-phenylchalcone, but to date only the two enones reported here have been found to undergo this 
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Both of the photoreactive enones I and 2 afford detectable transient intermediates in LFP (laser 

flash photolysis) experiments. Enone 1 gives rise to a transient with Lmax = 320 and 450 nm (x = 6.7 

ItS, N2). Enone 2 affords a similar transient with 3.max = 300 and 425 nm (x = 12 Its, N2,). 10 

Molecular oxygen, azide ion, methanol, cyclooctadiene, fumaronitrile, sulfuric acid and TFA/methanol 

do not substantially quench the formation of either of these transient species nor affect their lifetimes 

within the time frame of the experiments (ca. 30 ~s). These observations exclude the possibility that 

these transients arise from the starting ketone triplet excited states or triplet biradical precursors to the 

norcaradienes 7 and 10. 7 The long wavelength absorption maxima also exclude the possibility that the 

transients are due to the norcaradienes 7 and 10, but are consistent with their assignment to 

dihydrophenanthrenes.10,11 Thus, it may be that the observed transient spectra are dominated by the 

more strongly absorbing dihydrophenanthrene intermediates and may not be due to species involved in 

the formation of 6 and 8. Further efforts to obtain information about the intermediates involved in the 

reaction of I to 4 will be reported in a subsequent paper. 7 

In summary, a new photoreaction of phenyl enones has been observed which involves initial 

attack of the carbonyl oxygen at the ipso position of a neighboring aromatic ring followed by ring 

expansion to a cycloheptatriene system. In addition, the reaction of I also constitutes an unusual example 

of the use of the high-intensity laser-jet technique to detect primary photoproducts which might otherwise 

go unobserved as a result of subsequent photochemistry under more conventional continuous irradiation 

conditions. 
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